API Reference
The {fmt} library API consists of the following components:
fmt/base.h
: the base API providing main formatting functions forchar
/UTF-8 with C++20 compile-time checks and minimal dependenciesfmt/format.h
:fmt::format
and other formatting functions as well as locale supportfmt/ranges.h
: formatting of ranges and tuplesfmt/chrono.h
: date and time formattingfmt/std.h
: formatters for standard library typesfmt/compile.h
: format string compilationfmt/color.h
: terminal colors and text stylesfmt/os.h
: system APIsfmt/ostream.h
:std::ostream
supportfmt/args.h
: dynamic argument listsfmt/printf.h
: safeprintf
fmt/xchar.h
: optionalwchar_t
support
All functions and types provided by the library reside in namespace fmt
and macros have prefix FMT_
.
Base API
fmt/base.h
defines the base API which provides main formatting functions
for char
/UTF-8 with C++20 compile-time checks. It has minimal include
dependencies for better compile times. This header is only beneficial when
using {fmt} as a library (the default) and not in the header-only mode.
It also provides formatter
specializations for the following types:
int
,long long
,unsigned
,unsigned long long
float
,double
,long double
bool
char
const char*
,fmt::string_view
const void*
The following functions use format string syntax similar to that of str.format in Python. They take fmt and args as arguments.
fmt is a format string that contains literal text and replacement fields
surrounded by braces {}
. The fields are replaced with formatted arguments
in the resulting string. fmt::format_string
is a format
string which can be implicitly constructed from a string literal or a
constexpr
string and is checked at compile time in C++20. To pass a runtime
format string wrap it in fmt::runtime
.
args is an argument list representing objects to be formatted.
I/O errors are reported as std::system_error
exceptions unless
specified otherwise.
template <typename... T>
void print(format_string<T...> fmt, T&&... args);
Formats args
according to specifications in fmt
and writes the output to stdout
.
Example:
fmt::print("The answer is {}.", 42);
template <typename... T>
void print(FILE* f, format_string<T...> fmt, T&&... args);
Formats args
according to specifications in fmt
and writes the output to the file f
.
Example:
fmt::print(stderr, "Don't {}!", "panic");
template <typename... T>
void println(format_string<T...> fmt, T&&... args);
Formats args
according to specifications in fmt
and writes the output to stdout
followed by a newline.
template <typename... T>
void println(FILE* f, format_string<T...> fmt, T&&... args);
Formats args
according to specifications in fmt
and writes the output to the file f
followed by a newline.
template <typename OutputIt, typename... T>
auto format_to(OutputIt&& out, format_string<T...> fmt, T&&... args) -⁠> remove_cvref_t<OutputIt>;
Formats args
according to specifications in fmt
, writes the result to the output iterator out
and returns the iterator past the end of the output range. format_to
does not append a terminating null character.
Example:
auto out = std::vector<char>();
fmt::format_to(std::back_inserter(out), "{}", 42);
template <typename OutputIt, typename... T>
auto format_to_n(OutputIt out, size_t n, format_string<T...> fmt, T&&... args) -⁠> format_to_n_result<OutputIt>;
Formats args
according to specifications in fmt
, writes up to n
characters of the result to the output iterator out
and returns the total (not truncated) output size and the iterator past the end of the output range. format_to_n
does not append a terminating null character.
template <typename OutputIt>
struct format_to_n_result;
OutputIt out;
Iterator past the end of the output range.
size_t size;
Total (not truncated) output size.
template <typename... T>
auto formatted_size(format_string<T...> fmt, T&&... args) -⁠> size_t;
Returns the number of chars in the output of format(fmt, args...)
.
Formatting User-Defined Types
The {fmt} library provides formatters for many standard C++ types.
See fmt/ranges.h
for ranges and tuples including standard
containers such as std::vector
, fmt/chrono.h
for date and
time formatting and fmt/std.h
for other standard library types.
There are two ways to make a user-defined type formattable: providing a
format_as
function or specializing the formatter
struct template.
Use format_as
if you want to make your type formattable as some other
type with the same format specifiers. The format_as
function should
take an object of your type and return an object of a formattable type.
It should be defined in the same namespace as your type.
Example (run):
#include <fmt/format.h>
namespace kevin_namespacy {
enum class film {
house_of_cards, american_beauty, se7en = 7
};
auto format_as(film f) { return fmt::underlying(f); }
}
int main() {
fmt::print("{}\n", kevin_namespacy::film::se7en); // Output: 7
}
Using specialization is more complex but gives you full control over
parsing and formatting. To use this method specialize the formatter
struct template for your type and implement parse
and format
methods.
The recommended way of defining a formatter is by reusing an existing one via inheritance or composition. This way you can support standard format specifiers without implementing them yourself. For example:
// color.h:
#include <fmt/base.h>
enum class color {red, green, blue};
template <> struct fmt::formatter<color>: formatter<string_view> {
// parse is inherited from formatter<string_view>.
auto format(color c, format_context& ctx) const
-> format_context::iterator;
};
// color.cc:
#include "color.h"
#include <fmt/format.h>
auto fmt::formatter<color>::format(color c, format_context& ctx) const
-> format_context::iterator {
string_view name = "unknown";
switch (c) {
case color::red: name = "red"; break;
case color::green: name = "green"; break;
case color::blue: name = "blue"; break;
}
return formatter<string_view>::format(name, ctx);
}
Note that formatter<string_view>::format
is defined in fmt/format.h
so it has to be included in the source file. Since parse
is inherited
from formatter<string_view>
it will recognize all string format
specifications, for example
fmt::format("{:>10}", color::blue)
will return " blue"
.
In general the formatter has the following form:
template <> struct fmt::formatter<T> {
// Parses format specifiers and stores them in the formatter.
//
// [ctx.begin(), ctx.end()) is a, possibly empty, character range that
// contains a part of the format string starting from the format
// specifications to be parsed, e.g. in
//
// fmt::format("{:f} continued", ...);
//
// the range will contain "f} continued". The formatter should parse
// specifiers until '}' or the end of the range. In this example the
// formatter should parse the 'f' specifier and return an iterator
// pointing to '}'.
constexpr auto parse(format_parse_context& ctx)
-> format_parse_context::iterator;
// Formats value using the parsed format specification stored in this
// formatter and writes the output to ctx.out().
auto format(const T& value, format_context& ctx) const
-> format_context::iterator;
};
It is recommended to at least support fill, align and width that apply to the whole object and have the same semantics as in standard formatters.
You can also write a formatter for a hierarchy of classes:
// demo.h:
#include <type_traits>
#include <fmt/core.h>
struct A {
virtual ~A() {}
virtual std::string name() const { return "A"; }
};
struct B : A {
virtual std::string name() const { return "B"; }
};
template <typename T>
struct fmt::formatter<T, std::enable_if_t<std::is_base_of_v<A, T>, char>> :
fmt::formatter<std::string> {
auto format(const A& a, format_context& ctx) const {
return formatter<std::string>::format(a.name(), ctx);
}
};
// demo.cc:
#include "demo.h"
#include <fmt/format.h>
int main() {
B b;
A& a = b;
fmt::print("{}", a); // Output: B
}
Providing both a formatter
specialization and a format_as
overload is
disallowed.
class context;
context(iterator out, format_args args, detail::locale_ref loc);
Constructs a context
object. References to the arguments are stored in the object so make sure they have appropriate lifetimes.
Compile-Time Checks
Compile-time format string checks are enabled by default on compilers
that support C++20 consteval
. On older compilers you can use the
FMT_STRING macro defined in fmt/format.h
instead.
Unused arguments are allowed as in Python's str.format
and ordinary functions.
auto runtime(string_view s) -⁠> runtime_format_string<>;
Creates a runtime format string.
Example:
// Check format string at runtime instead of compile-time.
fmt::print(fmt::runtime("{:d}"), "I am not a number");
Named Arguments
template <typename Char, typename T>
auto arg(const Char* name, const T& arg) -⁠> detail::named_arg<Char, T>;
Returns a named argument to be used in a formatting function. It should only be used in a call to a formatting function.
Example:
fmt::print("The answer is {answer}.", fmt::arg("answer", 42));
Named arguments are not supported in compile-time checks at the moment.
Type Erasure
You can create your own formatting function with compile-time checks and small binary footprint, for example (run):
#include <fmt/format.h>
void vlog(const char* file, int line,
fmt::string_view fmt, fmt::format_args args) {
fmt::print("{}: {}: {}", file, line, fmt::vformat(fmt, args));
}
template <typename... T>
void log(const char* file, int line,
fmt::format_string<T...> fmt, T&&... args) {
vlog(file, line, fmt, fmt::make_format_args(args...));
}
#define MY_LOG(fmt, ...) log(__FILE__, __LINE__, fmt, __VA_ARGS__)
MY_LOG("invalid squishiness: {}", 42);
Note that vlog
is not parameterized on argument types which improves
compile times and reduces binary code size compared to a fully
parameterized version.
template <typename Context, typename... T, int NUM_ARGS, int NUM_NAMED_ARGS, unsigned long long DESC>
constexpr auto make_format_args(T&... args) -⁠> detail::format_arg_store<Context, NUM_ARGS, NUM_NAMED_ARGS, DESC>;
Constructs an object that stores references to arguments and can be implicitly converted to format_args
. Context
can be omitted in which case it defaults to context
. See arg
for lifetime considerations.
template <typename Context>
class basic_format_args;
A view of a collection of formatting arguments. To avoid lifetime issues it should only be used as a parameter type in type-erased functions such as vformat
:
void vlog(fmt::string_view fmt, fmt::format_args args); // OK
fmt::format_args args = fmt::make_format_args(); // Dangling reference
constexpr basic_format_args(const store<NUM_ARGS, NUM_NAMED_ARGS, DESC>& s);
Constructs a basic_format_args
object from format_arg_store
.
constexpr basic_format_args(const format_arg* args, int count, bool has_named);
Constructs a basic_format_args
object from a dynamic list of arguments.
auto get(int id) -⁠> format_arg;
Returns the argument with the specified id.
template <typename Context>
class basic_format_arg;
auto visit(Visitor&& vis) -⁠> decltype(vis(0));
Visits an argument dispatching to the appropriate visit method based on the argument type. For example, if the argument type is double
then vis(value)
will be called with the value of type double
.
Compatibility
template <typename Char>
class basic_string_view;
An implementation of std::basic_string_view
for pre-C++17. It provides a subset of the API. fmt::basic_string_view
is used for format strings even if std::basic_string_view
is available to prevent issues when a library is compiled with a different -std
option than the client code (which is not recommended).
constexpr basic_string_view(const Char* s, size_t count);
Constructs a string reference object from a C string and a size.
basic_string_view(const Char* s);
Constructs a string reference object from a C string.
basic_string_view(const S& s);
Constructs a string reference from a std::basic_string
or a std::basic_string_view
object.
constexpr auto data() -⁠> const Char*;
Returns a pointer to the string data.
constexpr auto size() -⁠> size_t;
Returns the string size.
Format API
fmt/format.h
defines the full format API providing additional
formatting functions and locale support.
template <typename... T>
auto format(format_string<T...> fmt, T&&... args) -⁠> std::string;
Formats args
according to specifications in fmt
and returns the result as a string.
Example:
#include <fmt/format.h>
std::string message = fmt::format("The answer is {}.", 42);
Utilities
template <typename T>
auto ptr(T p) -⁠> const void*;
Converts p
to const void*
for pointer formatting.
Example:
auto s = fmt::format("{}", fmt::ptr(p));
template <typename Enum>
constexpr auto underlying(Enum e) -⁠> underlying_t<Enum>;
Converts e
to the underlying type.
Example:
enum class color { red, green, blue };
auto s = fmt::format("{}", fmt::underlying(color::red)); // s == "0"
template <typename T>
auto group_digits(T value) -⁠> group_digits_view<T>;
Returns a view that formats an integer value using ',' as a locale-independent thousands separator.
Example:
fmt::print("{}", fmt::group_digits(12345));
// Output: "12,345"
template <typename T>
class detail::buffer;
A contiguous memory buffer with an optional growing ability. It is an internal class and shouldn't be used directly, only via memory_buffer
.
constexpr auto size() -⁠> size_t;
Returns the size of this buffer.
constexpr auto capacity() -⁠> size_t;
Returns the capacity of this buffer.
auto data() -⁠> T*;
Returns a pointer to the buffer data (not null-terminated).
void clear();
Clears this buffer.
void append(const U* begin, const U* end);
Appends data to the end of the buffer.
template <typename T, size_t SIZE, typename Allocator>
class basic_memory_buffer;
A dynamically growing memory buffer for trivially copyable/constructible types with the first SIZE
elements stored in the object itself. Most commonly used via the memory_buffer
alias for char
.
Example:
auto out = fmt::memory_buffer();
fmt::format_to(std::back_inserter(out), "The answer is {}.", 42);
This will append "The answer is 42." to out
. The buffer content can be converted to std::string
with to_string(out)
.
basic_memory_buffer(basic_memory_buffer&& other);
Constructs a basic_memory_buffer
object moving the content of the other object to it.
auto operator=(basic_memory_buffer&& other) -⁠> basic_memory_buffer&;
Moves the content of the other basic_memory_buffer
object to this one.
void resize(size_t count);
Resizes the buffer to contain count
elements. If T is a POD type new elements may not be initialized.
void reserve(size_t new_capacity);
Increases the buffer capacity to new_capacity
.
System Errors
{fmt} does not use errno
to communicate errors to the user, but it may
call system functions which set errno
. Users should not make any
assumptions about the value of errno
being preserved by library
functions.
template <typename... T>
auto system_error(int error_code, format_string<T...> fmt, T&&... args) -⁠> std::system_error;
Constructs std::system_error
with a message formatted with fmt::format(fmt, args...)
. error_code
is a system error code as given by errno
.
Example:
// This throws std::system_error with the description
// cannot open file 'madeup': No such file or directory
// or similar (system message may vary).
const char* filename = "madeup";
FILE* file = fopen(filename, "r");
if (!file)
throw fmt::system_error(errno, "cannot open file '{}'", filename);
void format_system_error(detail::buffer<char>& out, int error_code, const char* message);
Formats an error message for an error returned by an operating system or a language runtime, for example a file opening error, and writes it to out
. The format is the same as the one used by std::system_error(ec, message)
where ec
is std::error_code(error_code, std::generic_category())
. It is implementation-defined but normally looks like:
<message>: <system-message>
where <message>
is the passed message and <system-message>
is the system message corresponding to the error code. error_code
is a system error code as given by errno
.
Custom Allocators
The {fmt} library supports custom dynamic memory allocators. A custom
allocator class can be specified as a template argument to
fmt::basic_memory_buffer
:
using custom_memory_buffer =
fmt::basic_memory_buffer<char, fmt::inline_buffer_size, custom_allocator>;
It is also possible to write a formatting function that uses a custom allocator:
using custom_string =
std::basic_string<char, std::char_traits<char>, custom_allocator>;
auto vformat(custom_allocator alloc, fmt::string_view fmt,
fmt::format_args args) -> custom_string {
auto buf = custom_memory_buffer(alloc);
fmt::vformat_to(std::back_inserter(buf), fmt, args);
return custom_string(buf.data(), buf.size(), alloc);
}
template <typename ...Args>
auto format(custom_allocator alloc, fmt::string_view fmt,
const Args& ... args) -> custom_string {
return vformat(alloc, fmt, fmt::make_format_args(args...));
}
The allocator will be used for the output container only. Formatting
functions normally don't do any allocations for built-in and string
types except for non-default floating-point formatting that occasionally
falls back on sprintf
.
Locale
All formatting is locale-independent by default. Use the 'L'
format
specifier to insert the appropriate number separator characters from the
locale:
#include <fmt/core.h>
#include <locale>
std::locale::global(std::locale("en_US.UTF-8"));
auto s = fmt::format("{:L}", 1000000); // s == "1,000,000"
fmt/format.h
provides the following overloads of formatting functions
that take std::locale
as a parameter. The locale type is a template
parameter to avoid the expensive <locale>
include.
Legacy Compile-Time Checks
FMT_STRING
enables compile-time checks on older compilers. It requires
C++14 or later and is a no-op in C++11.
FMT_STRING(s)
Constructs a legacy compile-time format string from a string literal s
.
Example:
// A compile-time error because 'd' is an invalid specifier for strings.
std::string s = fmt::format(FMT_STRING("{:d}"), "foo");
To force the use of legacy compile-time checks, define the preprocessor
variable FMT_ENFORCE_COMPILE_STRING
. When set, functions accepting
FMT_STRING
will fail to compile with regular strings.
Range and Tuple Formatting
fmt/ranges.h
provides formatting support for ranges and tuples:
#include <fmt/ranges.h>
fmt::print("{}", std::tuple<char, int>{'a', 42});
// Output: ('a', 42)
Using fmt::join
, you can separate tuple elements with a custom separator:
#include <fmt/ranges.h>
auto t = std::tuple<int, char>{1, 'a'};
fmt::print("{}", fmt::join(t, ", "));
// Output: 1, a
template <typename Range>
auto join(Range&& r, string_view sep) -⁠> join_view<decltype(detail::range_begin(r)), decltype(detail::range_end(r))>;
Returns a view that formats range
with elements separated by sep
.
Example:
auto v = std::vector<int>{1, 2, 3};
fmt::print("{}", fmt::join(v, ", "));
// Output: 1, 2, 3
fmt::join
applies passed format specifiers to the range elements:
fmt::print("{:02}", fmt::join(v, ", "));
// Output: 01, 02, 03
template <typename It, typename Sentinel>
auto join(It begin, Sentinel end, string_view sep) -⁠> join_view<It, Sentinel>;
Returns a view that formats the iterator range [begin, end)
with elements separated by sep
.
template <typename T>
auto join(std::initializer_list<T> list, string_view sep) -⁠> join_view<const T*, const T*>;
Returns an object that formats std::initializer_list
with elements separated by sep
.
Example:
fmt::print("{}", fmt::join({1, 2, 3}, ", "));
// Output: "1, 2, 3"
Date and Time Formatting
fmt/chrono.h
provides formatters for
The format syntax is described in Chrono Format Specifications.
Example:
#include <fmt/chrono.h>
int main() {
std::time_t t = std::time(nullptr);
fmt::print("The date is {:%Y-%m-%d}.", fmt::localtime(t));
// Output: The date is 2020-11-07.
// (with 2020-11-07 replaced by the current date)
using namespace std::literals::chrono_literals;
fmt::print("Default format: {} {}\n", 42s, 100ms);
// Output: Default format: 42s 100ms
fmt::print("strftime-like format: {:%H:%M:%S}\n", 3h + 15min + 30s);
// Output: strftime-like format: 03:15:30
}
auto localtime(std::time_t time) -⁠> std::tm;
Converts given time since epoch as std::time_t
value into calendar time, expressed in local time. Unlike std::localtime
, this function is thread-safe on most platforms.
auto gmtime(std::time_t time) -⁠> std::tm;
Converts given time since epoch as std::time_t
value into calendar time, expressed in Coordinated Universal Time (UTC). Unlike std::gmtime
, this function is thread-safe on most platforms.
Standard Library Types Formatting
fmt/std.h
provides formatters for:
std::atomic
std::atomic_flag
std::bitset
std::error_code
std::exception
std::filesystem::path
std::monostate
std::optional
std::source_location
std::thread::id
std::variant
Formatting Variants
A std::variant
is only formattable if every variant alternative is
formattable, and requires the __cpp_lib_variant
library
feature.
Example:
#include <fmt/std.h>
fmt::print("{}", std::variant<char, float>('x'));
// Output: variant('x')
fmt::print("{}", std::variant<std::monostate, char>());
// Output: variant(monostate)
Format String Compilation
fmt/compile.h
provides format string compilation enabled via the
FMT_COMPILE
macro or the _cf
user-defined literal defined in
namespace fmt::literals
. Format strings marked with FMT_COMPILE
or _cf
are parsed, checked and converted into efficient formatting
code at compile-time. This supports arguments of built-in and string
types as well as user-defined types with format
functions taking
the format context type as a template parameter in their formatter
specializations. For example:
template <> struct fmt::formatter<point> {
constexpr auto parse(format_parse_context& ctx);
template <typename FormatContext>
auto format(const point& p, FormatContext& ctx) const;
};
Format string compilation can generate more binary code compared to the default API and is only recommended in places where formatting is a performance bottleneck.
FMT_COMPILE(s)
Converts a string literal s
into a format string that will be parsed at compile time and converted into efficient formatting code. Requires C++17 constexpr if
compiler support.
Example:
// Converts 42 into std::string using the most efficient method and no
// runtime format string processing.
std::string s = fmt::format(FMT_COMPILE("{}"), 42);
Terminal Colors and Text Styles
fmt/color.h
provides support for terminal color and text style output.
template <typename... T>
void print(const text_style& ts, format_string<T...> fmt, T&&... args);
Formats a string and prints it to stdout using ANSI escape sequences to specify text formatting.
Example:
fmt::print(fmt::emphasis::bold | fg(fmt::color::red),
"Elapsed time: {0:.2f} seconds", 1.23);
auto fg(detail::color_type foreground) -⁠> text_style;
Creates a text style from the foreground (text) color.
auto bg(detail::color_type background) -⁠> text_style;
Creates a text style from the background color.
template <typename T>
auto styled(const T& value, text_style ts) -⁠> detail::styled_arg<remove_cvref_t<T>>;
Returns an argument that will be formatted using ANSI escape sequences, to be used in a formatting function.
Example:
fmt::print("Elapsed time: {0:.2f} seconds",
fmt::styled(1.23, fmt::fg(fmt::color::green) |
fmt::bg(fmt::color::blue)));
System APIs
class ostream;
A fast buffered output stream for writing from a single thread. Writing from multiple threads without external synchronization may result in a data race.
void print(format_string<T...> fmt, T&&... args);
Formats args
according to specifications in fmt
and writes the output to the file.
template <typename... T>
auto windows_error(int error_code, string_view message, const T&... args) -⁠> std::system_error;
Constructs a std::system_error
object with the description of the form
<message>: <system-message>
where <message>
is the formatted message and <system-message>
is the system message corresponding to the error code. error_code
is a Windows error code as given by GetLastError
. If error_code
is not a valid error code such as -1, the system message will look like "error -1".
Example:
// This throws a system_error with the description
// cannot open file 'madeup': The system cannot find the file
specified. // or similar (system message may vary). const char *filename = "madeup"; LPOFSTRUCT of = LPOFSTRUCT(); HFILE file = OpenFile(filename, &of, OF_READ); if (file == HFILE_ERROR) { throw fmt::windows_error(GetLastError(), "cannot open file '{}'", filename); }
std::ostream
Support
fmt/ostream.h
provides std::ostream
support including formatting of
user-defined types that have an overloaded insertion operator
(operator<<
). In order to make a type formattable via std::ostream
you should provide a formatter
specialization inherited from
ostream_formatter
:
#include <fmt/ostream.h>
struct date {
int year, month, day;
friend std::ostream& operator<<(std::ostream& os, const date& d) {
return os << d.year << '-' << d.month << '-' << d.day;
}
};
template <> struct fmt::formatter<date> : ostream_formatter {};
std::string s = fmt::format("The date is {}", date{2012, 12, 9});
// s == "The date is 2012-12-9"
template <typename T>
constexpr auto streamed(const T& value) -⁠> detail::streamed_view<T>;
Returns a view that formats value
via an ostream operator<<
.
Example:
fmt::print("Current thread id: {}\n",
fmt::streamed(std::this_thread::get_id()));
template <typename... T>
void print(std::ostream& os, format_string<T...> fmt, T&&... args);
Prints formatted data to the stream os
.
Example:
fmt::print(cerr, "Don't {}!", "panic");
Dynamic Argument Lists
The header fmt/args.h
provides dynamic_format_arg_store
, a builder-like API
that can be used to construct format argument lists dynamically.
template <typename Context>
class dynamic_format_arg_store;
A dynamic list of formatting arguments with storage.
It can be implicitly converted into fmt::basic_format_args
for passing into type-erased formatting functions such as fmt::vformat
.
void push_back(const T& arg);
Adds an argument into the dynamic store for later passing to a formatting function.
Note that custom types and string types (but not string views) are copied into the store dynamically allocating memory if necessary.
Example:
fmt::dynamic_format_arg_store<fmt::format_context> store;
store.push_back(42);
store.push_back("abc");
store.push_back(1.5f);
std::string result = fmt::vformat("{} and {} and {}", store);
void push_back(std::reference_wrapper<T> arg);
Adds a reference to the argument into the dynamic store for later passing to a formatting function.
Example:
fmt::dynamic_format_arg_store<fmt::format_context> store;
char band[] = "Rolling Stones";
store.push_back(std::cref(band));
band[9] = 'c'; // Changing str affects the output.
std::string result = fmt::vformat("{}", store);
// result == "Rolling Scones"
void push_back(const detail::named_arg<char_type, T>& arg);
Adds named argument into the dynamic store for later passing to a formatting function. std::reference_wrapper
is supported to avoid copying of the argument. The name is always copied into the store.
void clear();
Erase all elements from the store.
void reserve(size_t new_cap, size_t new_cap_named);
Reserves space to store at least new_cap
arguments including new_cap_named
named arguments.
Safe printf
The header fmt/printf.h
provides printf
-like formatting
functionality. The following functions use printf format string
syntax
with the POSIX extension for positional arguments. Unlike their standard
counterparts, the fmt
functions are type-safe and throw an exception
if an argument type doesn't match its format specification.
template <typename... T>
auto printf(string_view fmt, const T&... args) -⁠> int;
Formats args
according to specifications in fmt
and writes the output to stdout
.
Example:
fmt::printf("Elapsed time: %.2f seconds", 1.23);
template <typename S, typename... T, typename Char>
auto fprintf(std::FILE* f, const S& fmt, const T&... args) -⁠> int;
Formats args
according to specifications in fmt
and writes the output to f
.
Example:
fmt::fprintf(stderr, "Don't %s!", "panic");
template <typename S, typename... T, typename Char>
auto sprintf(const S& fmt, const T&... args) -⁠> std::basic_string<Char>;
Formats args
according to specifications in fmt
and returns the result as as string.
Example:
std::string message = fmt::sprintf("The answer is %d", 42);
Wide Strings
The optional header fmt/xchar.h
provides support for wchar_t
and
exotic character types.
template <typename T>
auto to_wstring(const T& value) -⁠> std::wstring;
Converts value
to std::wstring
using the default format for type T
.
Compatibility with C++20 std::format
{fmt} implements nearly all of the C++20 formatting library with the following differences:
- Names are defined in the
fmt
namespace instead ofstd
to avoid collisions with standard library implementations. - Width calculation doesn't use grapheme clusterization. The latter has been implemented in a separate branch but hasn't been integrated yet.