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Abstract
We present a new algorithm for accurately and efficiently
converting floating-point numbers to decimal representation.
The algorithm is a variant of Grisu2 [1], algorithm pre-
sented in 2010. Our algorithm uses 128-bit integer arith-
metic to produce shortest and correctly rounded represen-
tation, whose correctness can be verified using methods in-
troduced for Ryū [2], another algorithm for floating-point
printing presented in 2018. Our proposed algorithm has a
better performance than Ryū for numbers with small num-
ber of digits and similar performance to Ryū for numbers
with large number of digits. For example, our algorithm is
about 80% faster for numbers with 2 digits, about 50% faster
for numbers with 6 digits for IEEE-754 binary64 encoded
floating-point numbers.

0. Disclaimer
This paper is not a completely formal writing, and is not
intended for publications into peer-reviewed conferences
or journals. The paper might contain some alleged claims
and/or lack of references.

1. Introduction
Converting between binary and decimal representations of
floating-point numbers is not a trivial problem. The major-
ity of the existing computing platforms internally uses bi-
nary representations for floating-point numbers, because it
enables much faster computations compared to the deci-
mal counterpart. Obviously, binary representations are not
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human-friendly, thus most of inputs and outputs of floating-
point numbers might require conversions. Many languages,
such as JavaScript, even mandate decimal representation as
the only way for input and output of floating-point num-
bers. JavaScript even does not have built-in integer types;
floating-point numbers (which are internally stored accord-
ing to IEEE-754 binary64 format) are the only native way
of dealing with numbers. Due to recent continuing increase
of JavaScript’s usage, demand for fast conversion algorithm
had been re-arisen recently in spite of the topic’s long his-
tory.

Although the input-side (decimal-to-binary conversion)
and the output-side (binary-to-decimal conversion) are both
equally important, arguably the output-side often has more
degree of freedom. Uncertain formatting specifications might
be one source of this freedom, but more fundamental is the
way we interpret a binary representation stored in memory:
it often represents an interval, not a single real number. For
example, there is no way to exactly represent 0.3 in a finite-
precision binary expansion, but usually such an input is not
treated as an error; rather, we compute the closest possible
binary expansion of 0.3 and treat as if 0.3 and the result-
ing expansion were the same number. As a consequence, for
each binary representation there are infinitely many deci-
mal representations that round to that binary representation,
while every valid decimal representation has a unique corre-
sponding binary representation if we fix the rounding rule.
One way to resolve this ambiguity of converting binary rep-
resentation into decimal string is to apply the following set
of criteria by Steele and White in 1990 [3]: 1

1. Information preservation: a correct parser must return
the original floating-point value from the output string,

2. Minimum-length output: the output string must be as
short as possible, and

1 Actually, there is one more criterion they have given: left-to-right gen-
eration of digits. However, we will not consider this criterion because the
end output of the algorithm will be integers representing the decimal sig-
nificand and the exponent, rather than a character array. This is arguably
advantageous for higher level formatting.
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3. Correct rounding: the output string must be as close to
the input binary representation as possible.

The first criterion is perhaps the minimum requirement
to be a “correct” algorithm. The second criterion also
certainly offers some practical advantages. For example,
the resulting output will be less bewildering to users be-
cause they would almost absolutely prefer 0.3 rather than
0.29999999999999997 although these numbers correspond
to the same binary representation. The third criterion seems
to be less important than the other two, but whenever there
are multiple decimal representations with the minimum
number of digits, it would be more probable that the one
closest to the given input (interpreted as a single real num-
ber) could be closer to the “true” answer.

Note that common printing functions like printf from
C standard library cannot satisfy these criteria because of its
specification: using too low precision breaks the information
preservation criterion, while using too high precision breaks
the minimum-length output criterion.

The algorithm proposed in [3] satisfies these criteria,
but its performance is not very good, mainly due to its
heavy computations involving high (or variable) precision
numbers, commonly called “big integers.” In 2010, Florian
Loitsch [1] proposed a new series of algorithms called Grisu,
Grisu2, and Grisu3, which completely avoid on-the-fly big
integer arithmetic and constrain themselves into 64-bits in-
teger arithmetic. However, these algorithms do not satisfy
the above criteria. To be more precise, Grisu only satisfies
the first criterion and completely ignored the others. Grisu2
addresses the second criterion and produces shortest out-
puts for most of possible inputs, but not all; 1E+23 is a
well-known failure case. Grisu3 also does not always pro-
duce shortest outputs for all possible inputs, but it detects its
failure so that one can resort to slower but more precise algo-
rithms. Grisu3 also deals with the third criterion for most of
possible inputs and is able to detect its failure. Although not
perfect, Grisu2 and Grisu3 proved their practical value and
many higher-level open-source software components have
adopted and implemented these algorithms.

In 2018, finally an algorithm both satisfying all the cri-
teria above and utilizing only fixed-precision integer arith-
metic is proposed [2]. This algorithm, Ryū, outperforms
many implementations of Grisu2 for numbers with large
number of digits. However, it has worse performance than
some well-tailored implementations of Grisu2 for numbers
with small number of digits, which is arguably more impor-
tant use-case.

With the inspiration from Ryū, we could develop a new
variant of the Grisu algorithm, Grisu-Exact, which performs
better than Ryū for this small digits case but at the same time
satisfies all the criteria. It also has performance comparable
to Ryū for large digits case as well. Mathematics behind the
correctness proof of Ryū again plays a critical role here.

2. IEEE-754 Specifications
Before diving into the details of the algorithm, let us review
IEEE-754 and fix some related notations. For a real number
w, by (binary) floating-point representation we mean the
representation

w = (−1)σw ·Fw · 2Ew

where σw = 0, 1, 0 ≤ Fw < 2, and Ew is an integer. We
say the above representation is normal if 1 ≤ Fw < 2. Of
course, there is no normal floating-point representation of 0,
while any other real number has a unique normal floating-
point representation. If the representation is not normal, we
say it is subnormal.

IEEE-754 specifications consist of the following rules
that define a mapping from the set of fixed-length bit patterns
bq−1bn−2 · · · b0 for some q into the real line augmented
with some special values:

1. The most-significant bit bq−1 is the sign σw.

2. The least-significant p-bits bp−1 · · · b0 are for storing the
significand Fw, while the remaining (q − p− 1)-bits are
for storing the exponent Ew. We call p the precision of
the representation.2

3. If q− p− 1 exponent bits are not all-zero nor all-one, the
representation is normal. In this case, we compute Fw as

Fw = 1 + 2−p ·
p−1∑
k=0

bk · 2k

and Ew as

Ew = −(2q−p−2 − 1) +

q−p−2∑
k=0

bp+k · 2k.

The constant term 2q−p−2 − 1 is called the bias, and we
denote this value as Emax := 2q−p−2 − 1.

4. If q− p− 1 exponent bits are all-zero, the representation
is subnormal. In this case, we compute Fw as

Fw = 2−p ·
p−1∑
k=0

bk · 2k

and let Ew = −(2q−p−2− 2). Let us denote this value of
Ew as Emin := −(2q−p−2 − 2).

5. If q−p−1 exponent bits are all-one, the pattern represents
either ±∞ when all of p significand bits are zero, or
NaN’s (Not-a-Number) otherwise.

When (q, p) = (32, 23), the resulting encoding format is
called binary32, and when (q, p) = (64, 52), the resulting
encoding format is called binary64.

2 Usually, it is actually p+1 that is called the precision of the format in other
literatures. However, we call p the precision in this paper for simplicity.
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For simplicity, let us only consider bit patterns corre-
sponding to positive real numbers from now on. Zeros, in-
finities, and NaN’s should be treated specially, and for neg-
ative numbers, we can simply ignore the sign until the fi-
nal output string is generated. Hence, for example, we do
not think of all-zero nor all-one patterns, and especially ex-
ponent bits are never all-one. Also, we always assume that
the sign bit is 0. With these assumptions, the mapping de-
fined above is one-to-one: each bit pattern corresponds to a
unique real number, and no different bit patterns correspond
to a same real number.

From now on, by saying w = Fw · 2Ew a floating-point
number we implicitly assumes that (1) w is a positive num-
ber representable within an IEEE-754 binary format with
some q and p, and (2) Fw and Ew are those obtained from
the rules above. In particular, the representation is normal
(1 ≤ Fw < 2) if Ew 6= Emin and is can be subnormal
(0 ≤ Fw < 1) only if Ew = Emin. If the representation is
normal, we call w a normal number, and for otherwise, we
call w a subnormal number.

For a floating-point number w = Fw · 2Ew , we define
w− as the greatest floating-point number smaller than w.
When w is the minimum possible positive floating-number
representable within the specified encoding format, that is,
w = 2−p · 2Emin , then we define w− = 0. Similarly, we de-
fine w+ as the smallest floating-point number greater than
w. Again, if w is the largest possible finite number repre-
sentable within the format, that is, w = (2 − 2−p)2Emax ,
then we define w+ := 2Emax+1.

In general, it can be shown that

w− =

{
(Fw − 2−p−1)2Ew if Fw = 1 and Ew 6= Emin

(Fw − 2−p)2Ew otherwise

and
w+ = (Fw + 2−p)2Ew .

We will also use the notations

m−w :=
w− + w

2
=


(Fw − 2−p−2)2Ew if Fw = 1 and

Ew 6= Emin

(Fw − 2−p−1)2Ew otherwise
,

m+
w :=

w + w+

2
= (Fw + 2−p−1)2Ew

to denote the midpoints of the intervals [w−, w], [w,w+],
respectively.

2.1 Rounding Modes
Floating-point calculations are inherently imprecise as the
available precision is limited. Hence, it is necessary to round
calculational results to make them fit into the precision limit.
Specifying how any rounding should be performed means to
define for each real number a corresponding floating-point

number in a consistent way. IEEE-754 currently defines five
rounding modes. We can describe those rounding modes by
specifying the inverse image in the real line of each floating-
point number w:

1. Round to nearest, ties to even: If the LSB (Least Signifi-
cant Bit) of the significand bits of w is 0, then the inverse
image is the closed interval [m−w ,m

+
w ]. Otherwise, it is

the open interval (m−w ,m
+
w). This is the default rounding

mode in most of the platforms. In fact, it is required to be
the default mode for binary encodings.

2. Round to nearest, ties away from zero: The inverse im-
age of w is the half-open interval [m−w ,m

+
w). This mode

is introduced in the 2008 revision of the IEEE-754 stan-
dard. Some platforms and languages, such as the recent
standards of the C and C++ language, do not have the
corresponding way of representing this rounding mode.

3. Round toward 0: The inverse image of w is the half-open
interval [w,w+).

4. Round toward +∞: The inverse image of w is the half-
open intervals (w−, w] if w is positive, and [w,w+) if w
is negative.3

5. Round toward −∞: The inverse image of w is the half-
open intervals [w,w+) if w is positive, and (w−, w] is w
is negative.

Though not included in the IEEE-754 standard, we can think
of the following additional rounding modes with their obvi-
ous meanings:

• Round to nearest, ties to odd

• Round to nearest, ties toward zero

• Round to nearest, ties toward +∞
• Round to nearest, ties toward −∞
• Round away from 0

Note that if I is the interval given as the inverse image of
w according to a given rounding mode, then a correct parser
must output w from any string representations of numbers in
I . Therefore, in order to produce a shortest possible output
string that is interpreted as w by a correct parser, we need
to search for a number inside I that has the least number of
decimal significand digits. This is the basic frame of all of
algorithms by Steele and White, Grisu family, and Ryū.

3. Flow of Grisu-Exact
3.1 Overview
The main idea of Grisu is that:

(a) the number of decimal significand digits is invariant un-
der multiplications by 10k’s, and

3 We supposed to deal only with positive numbers, so w here is actually a
positive number. The phrases “if w is positive” or “if w is negative” simply
mean that the original input is positive or negative, respectively.
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(b) we can map any floating-point number into a prescribed
interval by multiplying some appropriate 10k, so that

(c) we only need to find a way of searching for a number in
that interval.

The idea behind Grisu for (b) is that if we just give up per-
forming perfectly exact calculation and afford some amount
of error, then we can do the calculation very efficiently by
using cached approximations of 10k’s. However, exact cal-
culation up to the required precision is indeed possible if we
use more but still finite amount of caches, and we can prove
it using the method introduced in the correctness proof of
Ryū. Details will be given in Section 4.

On the other hand, Grisu’s solution to (c) can be described
as follows. It starts with the right endpoint, say z, of the
given interval. Then it successively cuts off least significant
digits from z, until the resulting number goes out of the
interval. Then the last number that stayed inside the interval
should be a candidate for the shortest output.

One of the reasons why this procedure for (c) works for
Grisu is that Grisu is an approximate algorithm, but we are
demanding an absolutely exact algorithm in this paper so
we need a slightly stronger guarantee. More specifically, the
procedure above might output the interval’s one of the two
endpoints, but depending on the rounding mode those end-
points might not belong to the interval.4 In order to over-
come this difficulty, we need to adjust the procedure a little
bit. Also, by changing successive search into binary search,
we can get a lot of performance improvement. Details for
this binary search will be given in Section 3.8.

3.2 Promotion of Significand to Wider Integers
Let q, p be the total number of bits and precision, respec-
tively, for a given IEEE-754 encoding format. For example,
(q, p) = (32, 23) for binary32 format and (q, p) = (64, 52)
for binary64 format. For a given floating-point number w =
Fw · 2Ew with the given encoding format, we first transform
it so that its significand is promoted to an integer type of
width q.5 Since q ≥ p + 3, all of w,w−, w+,m−w ,m

+
w can

be promoted without any loss of precision; explicitly, let
e := Ew − q + 1, and write

w = fc · 2e

where fc := Fw2
q−16 is an integer, and accordingly,

w− = f− · 2e, w+ = f+ · 2e,

m−w = f−m · 2e, m+
w = f+m · 2e

4 The Grisu2’s solution to this problem is to search inside a conservatively
reduced interval whose endpoints are always inside the actual interval.
Thus, Grisu2 never output a wrong result, just suboptimal results.
5 This is actually not strictly necessary but rather for convenience. For
example, it is totally possible to use 64-bit integers instead of 32-bit integers
for binary32 format. However, the width of the integral type should be at
least p+ 3 anyway.
6 c stands for “center.”

where

f− =

{
fc − 2q−p−2 if Fw = 1 and Ew 6= Emin

fc − 2q−p−1 otherwise
,

f+ = f + 2q−p−1,

f−m =

{
fc − 2q−p−3 if Fw = 1 and Ew 6= Emin

fc − 2q−p−2 otherwise
,

f+m = fc + 2q−p−2.

Note that fc is an integer in the interval [2q−1, 2q − 2q−p−1]
if w is normal, or in the range [2q−p−1, 2q−1− 2q−p−1] if w
is subnormal.7 Other f ’s are also all in the interval [0, 2q).
Note also that

fc − f− =

{
2q−p−2 if Fw = 1 and Ew 6= Emin

2q−p−1 otherwise
,

f+ − fc = 2q−p−1,

f+m − f−m =

{
3 · 2q−p−3 if Fw = 1 and Ew 6= Emin

2q−p−1 otherwise

are the possible lengths of the interval corresponding to w
after the transform.

One must be careful that computation of f+ can over-
flow when fc is the maximum possible value. This does
not cause any problem for one of round-to-nearest round-
ing modes, but for other rounding modes this special case
must be treated carefully. See Section 3.7 for details.

3.3 Grisu Multiplier
Next we describe how to map the exponent e into a pre-
scribed range by multiplying some appropriate 10k to the
promoted integers. We may call this 10k the Grisu multiplier
for w.

Let Q be a positive integer greater than q; here, Q will be
the precision of the caches; we will show in Section 4 that it
suffices to choose Q = 64 for binary32 format and Q = 128
for binary64 format. For a given integer k, let us write

10k = ϕk · 2ek

where ek ∈ Z and 2Q−1 ≤ ϕk < 2Q. Note that in the above
ϕk is not an integer; it is just a rational number in the interval
[2Q−1, 2Q).

By taking the logarithm, we get

k log2 10 = ek + log2 ϕk,

so
k log2 10−Q < ek ≤ k log2 10−Q+ 1,

7 Grisu uses a slightly different transform that ensures fc ∈ [2q−1, 2q) for
both normal and subnormal numbers. In Grisu such a choice is necessary
in order to more easily derive an error bound. Since Grisu-Exact is an exact
algorithm, this is not necessary; therefore, we use this arguably simpler
transform here.
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concluding
ek = bk log2 10c −Q+ 1.

We can write

w · 10k = (fcϕk2
−Q)2e+ek+Q,

where fcϕk2−Q < 2q , and we want to choose k satisfying

α ≤ e+ ek +Q ≤ γ (1)

for some predetermined integers α, γ such that γ ≥ α+ 3.
We will choose k := d(α− e− 1) log10 2e8 and define

β := e+ ek +Q with this k.

Proposition 3.1.
With the above choice of k, we have the inequality

α ≤ e+ ek +Q ≤ γ.

Proof. From (α− e− 1) log10 2 ≤ k, we get

2α−e−1 ≤ 10k = ϕk · 2ek ,

thus

α− e− 1 ≤ ek + log2 ϕk, α ≤ e+ ek + (log2 ϕk + 1).

Since log2 ϕk is in the interval [Q − 1, Q), in order to have
α ≤ e+ ek + (log2 ϕk + 1) we should in fact have

α ≤ e+ ek +Q

because e, ek, Q, α are all integers. On the other hand, note
that

k < (α− e− 1) log10 2 + 1

< (α− e− 1) log10 2 + 4 log10 2

≤ (γ − e) log10 2

since γ ≥ α+ 3. Thus,

2γ−e > 10k = ϕk · 2ek ,

and taking the logarithm gives

γ − e > ek + log2 ϕk, γ > e+ ek + log2 ϕk.

Again, since log2 ϕk ∈ [Q − 1, Q) and all of e, ek, Q, γ are
integers, we conclude

γ ≥ e+ ek +Q.

This completes the proof.

In [1], the author’s favored choice of α is −63. However,
in Grisu-Exact, we will set α to be not that small. It is this
choice of α that allows us to use binary search rather than
linear search, which is perhaps the most crucial factor of
performance improvement.

8 Our choice of k is almost identical to that of [1]. However, many popular
implementations of Grisu use a slightly different choice of k that allows
them to use much fewer amount of caches compared to that offered by the
original paper. This is possible due to the choice of α and γ that are far
apart from each other. In this paper, we will take advantage of the fact that
α and γ are chosen closely, so such a reduction is much harder.

3.4 Calculating k and β
In [1], k is computed using floating-point log function di-
rectly. However, we can do it better. Consider the following
hexadecimal expansion of log10 2:

log10 2 = 0x0.4d104d427de7fbcc · · ·

Hence, we can write

log10 2 = 2−20(0x4d104)

+ 2−20(0x0.d427de7fbcc · · · ).

Therefore, for an integer n,

n log10 2 = 2−20(n× 0x4d104)

+ 2−20(n× 0x0.d427de7fbcc · · · ).

We claim that when n ∈ [−1650, 1650], bn log10 2c can be
computed as

bn log10 2c = (n× 0x4d104) >>ar 20,

where >>ar is the arithmetic shift. 9

We consider the case when n is nonnegative first. Since
0 ≤ n ≤ 212, we have

n× 0x0.d427de7fbcc · · · < 0xd43.

Hence, whenever(
(n× 0x4d104) mod 232

)
+ 0xd43 < 221, (2)

we can safely drop the term

2−20(n× 0x0.d427de7fbcc · · · ).

One can check by direct computation that (2) is indeed true
for all n ∈ [0, 1650], except for n = 289, 485, 970, and
1455. For these cases, one can directly verify that still the
final formula is corrct. Our reference implementation [4]
contains a program verifying this.

On the other hand, suppose n < 0. Note that

bn log10 2c = −d−n log10 2e ,

and

−n log10 2 = 2−20((−n)× 0x4d104)
+ 2−20((−n)× 0x0.d427de7fbcc · · · ).

Clearly, −n log10 2 is not an integer, so

d−n log10 2e =
⌊
2−20((−n)× 0x4d104)

⌋
+ 1

9 Although modern CPU’s provide arithmetic operations for 64-bit integers,
generally 32-bit arithmetic operations often run faster. Hence, it is better to
confine the range of n and the shifting amount so that all operations are still
done only with 32-bit integers.
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by (2). On the other hand, the fractional part of 2−20((−n)×
0x4d104), which is nothing but the last 20 bits of (−n) ×
0x4d104, is not zero, thus we have

d−n log10 2e =
⌈
2−20((−n)× 0x4d104)

⌉
,

so

bn log10 2c = −
⌈
2−20((−n)× 0x4d104)

⌉
,

where the right-hand side is exactly the arithmetic right-shift
of n× 0x4d104 by 20. Thus, the claim is proved.

Using the claim, we can compute k:

k = −b−(α− e− 1) log10 2c .

Clearly, −(α − e − 1) for all reasonable values of α and
e for binary32 and binary64 formats are inside the range
[−1650, 1650].

In the original Grisu, ek’s are pre-computed with 10k’s
and stored as cache, but we can use the same idea to compute

β = e+ bk log2 10c+ 1

on runtime without sacrificing performance too much. Here,
we use the following hexadecimal expansion of log2 10:

log2 10 = 3 + log2
5

4
= 0x3.5269e12f346e2bf9 · · ·

Using the similar trick, one can show that for any integer
n ∈ [−642, 642], we have

bn log2 10c =
(
(n× 0x35269e) >>ar 20

)
.

Again, our reference implementation [4] contains a program
verifying this.

3.5 The Greatest Number with the Smallest Number
of Digits

Let wL and wR be the left and the right endpoints of the
interval associated to w, and fL, fR be the corresponding
promoted significands so that

wL = fL · 2e, wR = fR · 2e.

Now we multiply the Grisu multiplier:

x := wL · 10k = fLϕk2
−Q2β ,

y := w · 10k = fcϕk2
−Q2β ,

z := wR · 10k = fRϕk2
−Q2β .

Then the resulting interval I from x to z is where we find
a minimum digit number. Let δ := z − x, the length of the
interval. Note that I might or might not contain its endpoints.

As explained in Section 3.1, our basic strategy is to start
from z and then cutting off least significant digits succes-
sively until the resulting number goes outside of I . This pro-
cedure can be reformulated as the procedure of finding the
greatest integer κ and corresponding

⌊
z

10κ

⌋
such that:

• z mod 10κ ≤ δ if x ∈ I , or
• z mod 10κ < δ if x /∈ I .

The actual algorithm for finding κ and
⌊
z

10κ

⌋
will be ex-

plained in Section 3.8; here, let us just focus on why this
procedure is, if possibly done efficiently, able to give an an-
swer satisfying the minimum-length output criterion. (We
will also ignore the correct rounding criterion for a moment.)
The following proposition is a slight extension of Theorem
6.2 of [1], accounting for the left boundary.

Proposition 3.2.
Assuming z ∈ I , the number

⌊
z

10κ

⌋
10κ is the greatest

number in I having the smallest number of decimal digits.

Consequently, assuming z ∈ I ,
⌊
z

10κ

⌋
× 10κ−k is a

decimal representation of the floating-point number w with
the smallest number of digits.

To be precise, by number of decimal digits of a nonzero
real number z we mean

inf
{
blog10 |s|c+ 1: z = s · 10l for some s, l ∈ Z

}
.10

The number of decimal digits of 0 might be defined to be
either 0 or 1, depending on the usage; however, in our case,
the interval I will always avoid 0, so we do not need to care
about this special case.

Proof. We will not write down a formal proof of this propo-
sition; rather, we will sketch a higher level description of the
insight behind it. Translation of this description into a formal
proof should be not difficult. Let the decimal expansion of z
be something like

z = 12345.6789 · · ·

and κ is say, −2, so that⌊ z

10κ

⌋
10κ = 12345.67.

By the assumption on κ, we know that the number

12345.6

is too small to be inside I . Now, if there is a number in I with
only 6 decimal digits, then that number should look like

xxxxx.x

But since 12345.6 is outside of I , we should have

xxxxx.x > 12345.6.

Hence, xxxxx.x should be something like 12345.7; how-
ever this immediately implies that xxxxx.x is strictly larger
than z, which is of course impossible. Therefore, 12345.67
should be indeed a number with the smallest number of dig-
its. Of course, it is the greatest among those numbers; the
next number with the same number of digits is 12345.68,
and it is already strictly greater than z.

10 As usual, we define inf ∅ =∞.
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So far, so good. But what happens if z /∈ I? If our⌊
z

10κ

⌋
10κ is strictly smaller than z, or equivalently, if

z mod 10κ > 0,

then there is no problem;
⌊
z

10κ

⌋
× 10κ−k is a shortest rep-

resentation of the input. However, if z mod 10κ = 0, then
the resulting output is a representation of wR, which is not
valid. To resolve this problem, we find the greatest κ′ ≤ κ
such that:

• 10κ
′ ≤ δ if x ∈ I , or11

• 10κ
′
< δ if x /∈ I .

Then, we can use z − 10κ
′

instead of z.
First of all, z − 10κ

′
is clearly inside I . Also, it can be

seen that the number of decimal digits of z − 10κ
′

is that of
z plus κ − κ′. For example, if z = 12345.67, κ = −2, and
κ′ = −4 then

z − 10κ
′
= 12345.6699.

In other words, subtracting 10κ
′

decreases the last nonzero
decimal digit of z by one, and then adding κ− κ′ number of
9’s at the end. By the condition on κ′, we know that

z − 10κ
′+1 = 12345.669

should not be in I , so any number in I should look like

1234.669xxx · · ·

where the first x is nonzero. Hence, no number in I can have
less decimal digits than 12345.6699. With this intuition, it
is not hard to write down a formal proof of the following
proposition:

Proposition 3.3.
If every number in I is strictly smaller than

⌊
z

10κ

⌋
10κ = z

and strictly greater than
⌊

z
10κ+1

⌋
10κ+1, then

z − 10κ
′
=
(⌊ z

10κ

⌋
10κ−κ

′
− 1
)
10κ

′

is the greatest number in I having the smallest number of
decimal digits.

Consequently, assuming z /∈ I and
⌊
z

10κ

⌋
10κ = z,(⌊

z
10κ

⌋
10κ−κ

′ − 1
)
× 10κ

′−k is a decimal representation
of the floating-point number w with the smallest number of
digits.

3.6 Search Range of κ and Conditions on (α, γ)

Recall that we want to find the greatest integer κ such that

z mod 10κ ≤ δ or z mod 10κ < δ, (3)

11 Though rare, the case 10κ
′
= δ actually happens, when wR − wL is

exactly 1.

depending on the boundary condition. Note that

δ = (fR − fL)ϕk2−Q2β

≥ 2q−p−2 · 2Q−1 · 2−Q · 2β

= 2q−p−3 · 2β ≥ 2q−p−3 · 2α.

(4)

Therefore, the inequality (3) trivially follows if we have

10κ < 2q−p−3 · 2α,

or equivalently,

κ < (q − p− 3 + α) log10 2.

Therefore, the maximum κ satisfying the inequality (3)
should satisfy

κ ≥ d(q − p− 3 + α) log10 2e − 1.

On the other hand, note that δ is always strictly less than z;
hence, the inequality (3) cannot hold when 10κ > z.12 Note
that

z = fRϕk2
−Q2β < 2q · 2Q · 2−Q · 2γ = 2q+γ , (5)

so we always have 10κ > z if κ ≥ (q + γ) log10 2. Hence,
the maximum κ satisfying the inequality (3) should satisfy

κ ≤ d(q + γ) log10 2e − 1.

Consequently, we only need to inspect the inequality (3) for
κ’s in the range

d(q − p− 3 + α) log10 2e − 1 ≤ κ
≤ d(q + γ) log10 2e − 1.

(6)

Note that when κ ≥ 0, arguably the inequality (3) is mostly
determined only by integer parts of z and δ. Since we wish to
stick to bounded precision arithmetic, this is really valuable
information. Hence, in order to utilize this property, we
assume that our choice of α satisfies

d(q − p− 3 + α) log10 2e − 1 ≥ 0,

or equivalently,

α ≥ −(q − p− 4).

In Section 3.7, we will see how to actually compute the
integer parts of z and δ.

Also, we put additional restriction γ ≤ 0. By the upper
bound

z < 2q+γ

12 To be precise, δ is equal to z when I = (0, 2q−p−1] · 10k . This is the
only exceptional case, and for this case we are anyway excluding the left
boundary, so we should not allow z mod 10κ = δ. Hence, there is no
problem in eliminating 10κ > z even in this case.
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given in (5), this enables us to handle integer parts of z and
δ with q-bit integers.13 In summary, we impose following
conditions on α and γ:

1. α ≥ −(q − p− 4),

2. γ ≤ 0, and

3. α+ 3 ≤ γ.

There are not so many possible choices of (α, γ) satisfy-
ing the above conditions, and in the reference implemen-
tation [4], empirically chosen values (α, γ) = (−5,−2)
are used. With this specific choice, the search range of κ
is 0 ≤ κ ≤ 9 for binary32 format, and 1 ≤ κ ≤ 18 for
binary64 format.

3.7 Calculating Integer Parts of z and δ
In this section, a method of computing the integer parts of z
and δ is explained. Here, we need an assumption that if the
precision Q for the cache is large enough, then there is an
integer ϕ̃k in the interval [2Q−1, 2Q) so that

bzc =
⌊
fRϕ̃k2

−Q2β
⌋
,

bδc =
⌊
(fR − fL)ϕ̃k2−Q2β

⌋
.

Not likeϕk, ϕ̃k is just aQ-bit integer and does not have (pos-
sibly infinitely expanding) fractional part. Hence, we can
store pre-computed caches of all ϕ̃k’s and use them anytime.
We will show in Section 4, using the method introduced in
[2], that Q = 2q is sufficient to guarantee the existence of
ϕ̃k’s for both binary32 and binary64 formats.

Note that modern computing platforms can indeed effi-
ciently compute bzc using the above formula. In particular,
when q = 64 and Q = 128, the integer part bzc of z is noth-
ing but the upper 64 + β bits of the 192-bit integer fRϕ̃k.
Computing platforms like modern x64 machines provide an
instruction for computing 128-bit result of multiplying two
64-bit integers, and an instruction for adding two 64-bit inte-
gers together with the carry bit resulting from the preceding
addition. In such a platform, this computation of bzc can be
done like the following:

1. First, divide ϕ̃k into two 64-bit parts, UPPER(ϕ̃k) and
LOWER(ϕ̃k).

2. Next, compute the 64-bit integers

a := UPPER(fR ·UPPER(ϕ̃k)),

b := LOWER(fR ·UPPER(ϕ̃k)), and

c := UPPER(fR ·LOWER(ϕ̃k)).

3. Compute a plus the carry of b+ c, then the upper 64+β-
bits of the result is our desired 64 + β bits. (Recall
β ≤ γ ≤ 0)

13 In fact, the original proposal of the Grisu-Exact algorithm did not have
this restriction. Instead, it split z and δ into two q-bit integers and handled
them separately. It turned out that removing this splitting by imposing
γ ≤ 0 did not result in a dramatic speedup, but it certainly simplified the
whole algorithm a lot.

Even when the platform does not provide such fancy instruc-
tions, it is totally possible to do this computation only using
standard 64-bit modular arithmetic. For example, it is pos-
sible to efficiently calculate the 128-bit result of 64-bit inte-
ger multiplication by splitting the multiplicands into 32-bit
integers, multiplying those pieces, and then putting them to-
gether. See, for example, [5].

As noted before, when fR = f+, we need a special
treatment of the case when fc is the maximum possible value
because in that case the proper value of f+, which is 2q ,
cannot be stored in a q-bit integer type. This is not a serious
problem though, because if f+ = 2q , then obviously the
upper q + β bits of fRϕ̃k is nothing but the upper q + β bits
of ϕ̃k.

In fact, computation of bδc can be done without resorting
to 128-bit arithmetic. Recall that δ is one of 3 · 2q−p−3,
2q−p−2, or 2q−p−1 times 10k. Thus, except for the case
δ = 3 · 2q−p−3 · 10k, computing bδc is nothing but extracting
upper (q − p − j) + β, j = 1, 2, 3 bits of ϕ̃k. Fortunately,
even for the case δ = 3 · 2q−p−3 · 10k, bδc can be similarly
computed:

1. Extract upper 63 bits, and upper 62 bits of ϕ̃k, respec-
tively, and call them a, b.

2. Add a and b.

3. Extract upper (q − p− 1) + β bits of a+ b.

This procedure is based on an intuition coming from the
identity δ = 2q−p−1(2−1 · 10k + 2−2 · 10k), and it can be
computationally verified that for all possible values of k,
this computation agrees with the direct computation of bδc
using the same method of computing bzc. See our reference
implementation [4] for a program verifying this.

3.8 Search Procedure
In this section we describe how we proceed to find κ inside
the range given in (6):

0 ≤ d(q − p− 3 + α) log10 2e − 1 ≤ κ
≤ d(q + γ) log10 2e − 1.

First, let us denote the integer and fractional parts of z, δ as:

z(i) := bzc , z(f) := z − z(i),
δ(i) := bδc , δ(f) := δ − δ(i)

and write

z(i) = 10κsκ + rκ (7)

for given κ, where sκ, rκ are nonnegative integers with rκ <
10κ. Then we know

(z mod 10κ) = rκ + z(f)

and ⌊ z

10κ

⌋
= sκ.
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Note that if rκ > δ(i), then we immediately conclude
z mod 10κ > δ, and if rκ < δ(i), then we immediately con-
clude z mod 10κ < δ. In these cases, we can just safely for-
get about the fractional parts z(f) and δ(f). When rκ = δ(i),
then we do need to compare z(f) and δ(f), but we can do
that without actually computing them. See Section 3.9 for
details for this comparison; in this section, let us just assume
that we can compare z(f) and δ(f) whenever needed.

Now, the very first thing to do is to compute z(i) and
δ(i) according to the procedure explained in the previous
section. And then, we take an initial guess κ0 of κ. In this
paper, we will just take a predetermined value for κ0 (in the
reference implementation [4], we chose κ0 = 2 for binary32
and κ0 = 3 for binary64), but there can be a better strategy
for picking the initial guess.14

Next, we compute the corresponding sκ0
and rκ0

. To do
that, we perform integer division of z(i) by 10κ0 . Integer di-
vision is a notoriously slow operation to actually perform,
but since the divisor is a known constant 10κ0 , it can be
replaced by a series of simpler operations, as explained in
the classic paper by Granlund and Montgomery [6]. Fortu-
nately, modern optimizing compilers are well aware of this
technique and apply it automatically.

Next, we can compare z mod 10κ0 to δ:

• if rκ0
> δ(i), then z mod 10κ0 > δ, and

• if rκ0 < δ(i), then z mod 10κ0 < δ, and
• if rκ0

= δ(i), then compare z(f) to δ(f) using the method
explained Section 3.9:

if z(f) > δ(f), then z mod 10κ0 > δ, and

if z(f) < δ(f), then z mod 10κ0 < δ, and

if z(f) = δ(f), then z mod 10κ0 = δ.

Now, depending on the boundary condition, we can con-
clude whether or not if the inequality (3) is satisfied for
κ = κ0. If it is not satisfied (that is, z mod 10κ0 is larger),
then that means our choice κ = κ0 was too large, and if it
is satisfied (that is, z mod 10κ0 is smaller), then maybe we
can find a bigger κ that still satisfies (3). We deal with each
case separately.

3.8.1 Case I: Decreasing Search (When 10κ0sκ0 /∈ I)
First, consider the case when z mod 10κ0 is larger, so
10κ0sκ0

/∈ I . This means our choice κ = κ0 was too large,
so for a fixed positive integer λ, we try to compute sκ−λ and
rκ−λ to see if z mod 10κ−λ is still bigger than δ. Note that
if we write

sκ−λ = 10λs+ η

14 In general, larger value of κmeans shorter output. Hence, choosing small
κ0 means favoring the performance for numbers with many digits, while
choosing large κ0 means the opposite.

for nonnegative integers s, η with η < 10λ and plug it into
(7), we get

z(i) = 10κs+ (10κ−λη + rκ−λ),

so we conclude

sκ = s, rκ = 10κ−λη + rκ−λ.

Hence, we can first compute η and rκ−λ by dividing rκ by
10κ−λ, and then compute sκ−λ as

sκ−λ = 10λsκ + η. (8)

However, this is not a good idea, because we wish to iterate
this procedure with varying κ; here, the divisor 10κ−λ is
therefore not a fixed constant, which means we cannot utilize
Granlund-Montgomery-style optimization here. To resolve
this issue, note that

10κ0−κrκ = 10κ0−λη + 10κ0−κrκ−λ. (9)

Here, if we know 10κ0−κrκ instead of rκ, then we can still
compute η and 10κ0−κrκ−λ with Granlund-Montgomery
algorithm. And if we know 10κ0−κδ(i) in addition, then we
can still proceed the comparison procedure:

• if 10κ0−κrκ−λ > 10κ0−κδ(i), then z mod 10κ−λ > δ,
and

• if 10κ0−κrκ−λ < 10κ0−κδ(i), then z mod 10κ−λ < δ,
and

• if 10κ0−κrκ−λ = 10κ0−κδ(i), then compare z(f) to δ(f)

using the method explained in a later section:

if z(f) > δ(f), then we conclude z mod 10κ−λ > δ,
and

if z(f) < δ(f), then we conclude z mod 10κ−λ < δ,
and

if z(f) = δ(f), then we conclude z mod 10κ−λ = δ.

If what we conclude in the above is that the inequality (3) is
not satisfied, then that means our choice of κ− λ is still too
large. In this case, we compute

10κ0−(κ−λ)rκ−λ = 10λ
(
10κ0−κrκ−λ

)
and

10κ0−(κ−λ)δ(i) = 10λ
(
10κ0−κδ(i)

)
,

replace κ by κ − λ, and do the procedure again with a
different λ. Here, we also do not need to care about overflow,
because from the equation (9) we know that

0 ≤ 10κ0−κrκ−λ < 10κ0−λ,

so
0 ≤ 10κ0−(κ−λ)rκ−λ < 10κ0 < 2q.

Computation of 10κ0−(κ−λ)δ(i) is also okay, because we
already know rκ0 ≥ δ(i) from the beginning.
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On the other hand, if our conclusion is that the inequality
(3) is satisfied, then we can maybe find a bigger κ that still
satisfies the condition, so we do not replace κ, and just repeat
the procedure with a smaller λ.

We continue iterating until we are sure that the current κ
is the smallest κ that fails to satisfy (3). Then, we compute
the corresponding sκ−1 again using (8) and (9) and replace
κ by κ− 1.

Now, with the newly computed sκ and κ we are almost
done, but when the right endpoint is not contained in the
interval we still need to deal with the case when z = sκ.
Note that z = sκ means rκ = z(f) = 0, so we first check
if these are true. Details of how to check if z(f) = 0 will
be given in Section 3.10. If we confirmed that z = sκ is the
case and is not allowed, then we need to compute the greatest
integer κ′ ≤ κ satisfying

10κ
′
≤ δ or 10κ

′
< δ (10)

depending on the boundary condition on the left endpoint.
Note that if we start from κ′ = κ and successively compare
10κ

′
with δ and decrease κ′ by 1 when 10κ

′
is still bigger,15

then the procedure always terminates before κ′ becomes
negative because of the condition on α:

α ≥ −(q − p− 4),

because this condition gives us

2 ≤ 2q−p−3+α ≤ δ.

Therefore, we almost never need to look at the fractional part
of δ when checking if (10) is satisfied. As usual, 10κ

′
< δ(i)

implies 10κ
′
< δ and 10κ

′
> δ(i) implies 10κ

′
> δ.

Since 10κ
′

is always an integer, 10κ
′
= δ(i) implies either

10κ
′
= δ when δ is an integer, or 10κ

′
< δ otherwise.

In fact, checking if 10κ
′
= δ can be done very simply.

First of all, note that we need to check if 10κ
′
= δ only for

one of the nearest rounding modes, because otherwise one
of x and z must be contained in I . Hence, δ must be of the
form

δ =

{
3 · 2q−p−3 · 2e · 10k if Fw = 1 and Ew 6= Emin

2q−p−1 · 2e · 10k otherwise
.

Hence, δ is a power of 10 if and only if δ = 10k, which
happens only when e = −(q − p − 1). Therefore, given
that 10κ

′
= δ(i) and with the assumption on the rounding

mode, if the fractional part of δ is zero, then we must have
e = −(q − p − 1). Actually, the converse is also true; if
e = −(q − p− 1), then δ is either 3

4 · 10k or 10k, and since

δ ≥ 2q−p−3 · 2α ≥ 2q−p−3 · 2−(q−p−4) = 2

15 Thus, searching procedure for κ′ is, not like that for κ, linear. There might
be a way to optimize this, but the frequency of occasions where the search
is actually needed is not that large anyway.

by (4), we have k ≥ 1. It can be easily verified that then it
is impossible to have

⌊
3
410

k
⌋
= 10κ

′
, thus we must have

δ = 10k = 10κ
′
. Therefore, with the assumption on the

rounding mode and 10κ
′
= δ(i), we have 10κ

′
= δ if and

only if e = −(q − p− 1).
To initiate the procedure, we need to know the value

10κ. However, in fact this is not necessary. From the search
procedure for κ, we know 10κ0−κδ(i). Since comparing 10κ

with δ(i) is equivalent to comparing 10κ0 to 10κ0−κδ(i), we
can just reuse these precomputed values.

3.8.2 Case II: Increasing Search (When 10κ0sκ0 ∈ I)
Next, consider the case when z mod 10κ0 is smaller, so
10κ0sκ0

∈ I . This means our choice κ = κ0 can be possibly
too small, so for a fixed positive integer λ, we try to compute
sκ+λ and rκ+λ to see if z mod 10κ+λ is still smaller than δ.
Note that if we write

sκ = 10λs+ η

for nonnegative integers s, η with η < 10λ and plug it into
(7), we get

z(i) = 10κ+λs+ (10κη + rκ),

so we conclude

sκ+λ = s, rκ+λ = 10κη + rκ.

We can compute s and η by performing integer division of
sκ by 10λ, and since 10λ is a known constant, Granlund-
Montgomery algorithm can be applied. Of course, computa-
tion of rκ+λ cannot overflow because rκ+λ ≤ z(i) by defi-
nition.

Again, we compare rκ+λ with δ, and if rκ+λ is too large,
that means κ + λ is too large, so do the same thing with a
smaller λ. If rκ+λ is smaller than δ, then still we might be
able to choose a bigger κ, so replace κ by κ + λ and do the
same thing with a smaller λ, and this iteration continues until
we are sure that the current κ is the maximum κ satisfying
the inequality (3). Note that in this iteration we need to
multiply η by 10κ, so we need to store the value of 10κ and
replace it by 10κ+λ when necessary.

After that, we repeat the procedure of finding κ′ if neces-
sary as we did for the first case. Here, we need to know the
initial value of 10κ

′
= 10κ, but we already have kept track

of that value so we can just use it.

3.9 Comparing Fractional Parts
Now we explain how to compare z(f) and δ(f). Note that we
only need to compare them when we encounter the situation
rκ = δ(i) for some κ. This means that

z = 10κsκ + rκ + z(f) = 10κsκ + δ + (z(f) − δ(f)).

According to the definition δ = z − x, it follows that

x = 10κsκ + (z(f) − δ(f)).
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Note that if κ = 0, then we absolutely does have the in-
equality (3), so we actually do not need to compare z(f) and
δ(f) when we are sure that κ < 1. That means we can safely
assume κ ≥ 1 here. Thus, 10κsκ is an even integer. Since

−1 < z(f) − δ(f) < 1,

we can draw the following conclusion:

1. z(f) ≥ δ(f) if and only if x(i) is an even integer,

2. z(f) < δ(f) if and only if x(i) is an odd integer, and

3. z(f) = δ(f) if and only if x is an integer,

where x(i) := bxc is the integer part of x. Therefore, the
problem of comparing z(f) and δ(f) can be reduced into the
problem of (1) checking the parity of the integer part of x,
and (2) inspecting if x is an integer or not. Since we are able
to compute the integer part of x = wL · 10k just like z and
δ, it only remains to contrive a way of checking if x is an
integer or not.16

We can indeed check that by looking at the definition

x = wL · 10k = fL · 2e+k · 5k.

Recall that fL is one of f−m, f−, or fc, depending on the
rounding mode. More precisely,

1. fL = fc − 2q−p−3 if the rounding mode is one of round
to nearest’s, and Fw = 1 and Ew 6= Emin. Since Fw = 1
implies fc = 2q−1, we have fL = 2q−p−3(2p+2 − 1) in
this case.

2. fL = fc − 2q−p−2 if the rounding mode is one of round
to nearest’s, and Fw 6= 1 or Ew = Emin.

3. fL = fc − 2q−p−2 if Fw = 1 and Ew 6= Emin and one
of the following conditions are satisfied:

(a) The rounding mode is round toward +∞ and the input
is a positive number, or

(b) The rounding mode is round toward−∞ and the input
is a negative number, or

(c) The rounding mode is round away from 0.

Since Fw = 1 implies fc = 2q−1, we have fL =
2q−p−2(2p+1 − 1) in this case.

4. fL = fc − 2q−p−1 if Fw 6= 1 or Ew = Emin, and one of
the following conditions are satisfied:

(a) The rounding mode is round toward +∞ and the input
is a positive number, or

(b) The rounding mode is round toward−∞ and the input
is a negative number, or

(c) The rounding mode is round away from 0.

16 It is worth mentioning that although it is possible to compute the integer
part of x, it is best to avoid computing it, because the computation of integer
part of x or z is a relatively heavy operation. This is the reason why we try
hard to compute everything in terms of bzc and bδc as much as possible.

5. fL = fc if one of the following conditions are satisfied:

(a) The rounding mode is round toward−∞ and the input
is a positive number, or

(b) The rounding mode is round toward +∞ and the input
is a negative number, or

(c) The rounding mode is round toward 0.

Since the minimum unit of Fw is 2−p and fc := Fw2
q−1,

it follows that fc is always a multiple of 2q−p−1. With this
information, we deal with each case separately.

3.9.1 Case I: fL = fc − 2q−p−3, Fw = 1 and
Ew 6= Emin

In this case, we know fL = 2q−p−3(2p+2 − 1), thus

x = 2(q−p−3)+e+k · 5k · (2p+2 − 1).

Since 2p+2 − 1 is an odd integer, x is an integer if and only
if:

1. (q − p− 3) + e+ k ≥ 0 and

2. Either k ≥ 0 or 5−k | (2p+2 − 1).

Note that for both binary32 (p = 23) and binary64 (p = 52)
formats, 2p+2 − 1 is not a multiple of 5.17 Thus, the second
condition is actually equivalent to k ≥ 0. According to our
choice of k:

k = d(α− e− 1) log10 2e ,

the condition k ≥ 0 is equivalent to

(α− e− 1) log10 2 > −1,

which can be rewritten as

α− e− 1 > − log2 10, e < α− 1 + log2 10,

or equivalently,

e ≤ α+ 2.

On the other hand, for the first condition, note that

(q − p− 3) + e+ d(α− e− 1) log10 2e ≥ 0

if and only if

(q − p− 3) + e+ (α− e− 1) log10 2 > −1,

if and only if

e log10 5 > −(q − p− 2)− (α− 1) log10 2.

Simplifying the above gives

e > −(q − p− 2) log5 10− (α− 1) log5 2

= −(q − p− 3 + α) log5 2− (q − p− 2),

17 It is easy to verify that 2n − 1 is a multiple of 5 if and only if n is a
multiple of 4. Both 25 and 54 are not multiples of 4.
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which is equivalent to

e ≥ b−(q − p− 3 + α) log5 2c − (q − p− 3).

Therefore, x is an integer if and only if

b−(q − p− 3 + α) log5 2c − (q − p− 3) ≤ e ≤ α+ 2.

It is worth mentioning that due to our condition on α
given in Section 3.6, the above range is always nonempty;
that means,

b−(q − p− 3 + α) log5 2c − (q − p− 3) ≤ α+ 2.

To see why, recall that the condition α ≥ −(q − p − 4) is
equivalent to

d(q − p− 3 + α) log10 2e ≥ 1,

thus
(q − p− 3 + α) log10 2 > 0,

which implies

−(q − p− 3 + α) log5 2 < 0.

Therefore,

b−(q − p− 3 + α) log5 2c ≤ −1,

so

b−(q − p− 3 + α) log5 2c − (q − p− 3)

≤ −(q − p− 2) ≤ α− 2 ≤ α+ 2.

3.9.2 Case II: fL = fc − 2q−p−2 and Fw 6= 1 or
Ew = Emin

Recall that fc is an integer multiple of 2q−p−1. Therefore,
fL/2

q−p−2 should be an odd integer. Therefore,

x = fL · 2e+k · 5k

is an integer if and only if:

1. (q − p− 2) + e+ k ≥ 0, and

2. Either k ≥ 0 or 5−k | fL.

Just like the previous case, the first condition can be rewrit-
ten as

e ≥ b−(q − p− 2 + α) log5 2c − (q − p− 2),

and the condition k ≥ 0 can be rewritten as

e ≤ α+ 2,

so the resulting range for k ≥ 0 is

b−(q − p− 2 + α) log5 2c − (q − p− 2) ≤ e ≤ α+ 2.

When k < 0, from the inequality

b−(q − p− 3 + α) log5 2c − (q − p− 3) ≤ α+ 2

we know e > α+ 2 implies (q − p− 3) + e+ k ≥ 0, so in
particular (q − p− 2) + e+ k ≥ 0. Therefore, it suffices to
check if 5−k divides fL. To avoid the burden of computing
the division by 5−k on-the-fly, we first derive an upper bound
for −k. Note that 5−k divides fL if and only if it divides
fL

2q−p−2 = fc
2q−p−2 − 1. Since the maximum possible value of

fc is 2q − 2q−p−1, it follows that

fL
2q−p−2

≤ 2q − 2q−p−1

2q−p−2
− 1 = 2p+2 − 3.

Hence, if 5−k > 2p+2 − 3, we can never have 5−k | fL.
Therefore, we should have

5−k ≤ 2p+2 − 3,

or equivalently,

−k ≤
⌊
log5(2

p+2 − 3)
⌋
.

In fact, it can be computationally verified that for all reason-
able values of p (e.g., in the range [2, 256]), we have⌊

log5(2
p+2 − 3)

⌋
= b(p+ 2) log5 2c ,

so the condition is equivalent to

−k ≤ b(p+ 2) log5 2c .

In terms of e, we can rewrite the above as

d(α− e− 1) log10 2e ≥ −b(p+ 2) log5 2c ,

or equivalently,

(α− e− 1) log10 2 > −b(p+ 2) log5 2c − 1,

thus we get

e < α− 1 + (b(p+ 2) log5 2c+ 1) log2 10,

and we can rewrite this as

e ≤ (α− 2) + d(b(p+ 2) log5 2c+ 1) log2 10e .

Hence, if e satisfies

α+ 3 ≤ e ≤ (α− 2) + d(b(p+ 2) log5 2c+ 1) log2 10e ,

we have
0 < −k ≤ b(p+ 2) log5 2c .

More concretely, in this case we have −k ∈ [1, 10] for
binary32 format (p = 23), and −k ∈ [1, 23] for binary64
format (p = 52).
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Note that we are not interested in computing the quo-
tient nor remainder of fL divided by 5−k; what we only care
about is the divisibility. We can thus apply the fast divisibil-
ity test algorithm explained in [6], Section 9. In a nutshell,
[6] says that, for a given number of bits q, and a nonnegative
integer n and an odd positive integer a that both fit inside
q bits, n is divisible by a if and only if ng mod 2q is no
more than

⌊
2q−1

a

⌋
, where g is the multiplicative inverse of

a inside the ring Z/2q . Hence, we can precompute and store
these numbers (the quotient

⌊
2q−1

a

⌋
and the inverse g) for all

a = 5−k and use them to check divisibility.

3.9.3 Case III: fL = fc − 2q−p−2, Fw = 1 and
Ew 6= Emin

In this case, we know fL = 2q−p−2(2p+1 − 1), thus

x = 2(q−p−2)+e+k · 5k · (2p+1 − 1).

This case is almost same as the Case I. However, for bi-
nary32 format (p = 23), 2p+1−1 is actually a multiple of 5.
It is nonetheless not a multiple of 52, so the x is an integer if
and only if:

1. (q − p− 2) + e+ k ≥ 0, and

2. k ≥ −1 for binary32 format, k ≥ 0 for binary64 format.

As we have seen in Case II, the first condition is equivalent
to

e ≥ b−(q − p− 2 + α) log5 2c − (q − p− 2),

and the second condition is equivalent to

e ≤ α+ 5 or e ≤ α+ 2,

thus we conclude that x is an integer if and only if

b−(q − p− 2 + α) log5 2c − (q − p− 2) ≤ e ≤ α+ 5

for binary32 format and

b−(q − p− 2 + α) log5 2c − (q − p− 2) ≤ e ≤ α+ 2

for binary64 format.

3.9.4 Case IV: fL = fc − 2q−p−1 and Fw 6= 1 or
Ew = Emin

Since fc is an integer multiple of 2q−p−1, so is fL. Again,
just like Case II, since

x = fL · 2e+k · 5k,

we can conclude that x is an integer if and only if:

1. Either (q − p− 1) + e+ k ≥ 0 or 2−e−k | fL, and

2. Either k ≥ 0 or 5−k | fL.

We know that k ≥ 0 is equivalent to e ≤ α + 2, and
e > α+ 2 implies (q − p− 3) + e+ k ≥ 0, so in particular
(q − p − 1) + e + k ≥ 0. Hence, the above condition is
equivalent to:

1. b−(q − p− 1 + α) log5 2c − (q − p − 1) ≤ e ≤ α + 2,
or

2. e ≥ α+ 3 and 5−k | fL, or

3. e ≤ b−(q − p− 1 + α) log5 2c−(q−p) and 2−e−k | fL.

For the second subcase, again we derive an upper bound
for −k:

fL
2q−p−1

≤ 2q − 2q−p−1

2q−p−1
− 1 = 2p+1 − 2,

thus

−k ≤
⌊
log5(2

p+1 − 2)
⌋
= b(p+ 1) log5 2c

where the last equality holds for all reasonable values for p
(e.g., in the range [2, 256]), and again this is equivalent to

e ≤ (α− 2) + d(b(p+ 1) log5 2c+ 1) log2 10e .

If e is in the range

α+ 3 ≤ e ≤ (α− 2) + d(b(p+ 1) log5 2c+ 1) log2 10e ,

then we have −k ∈ [1, 10] for binary32 format (p = 23)
and −k ∈ [1, 22] for binary64 format (p = 52), and we can
proceed just like Case II.

For the third subcase, note that checking 2−e−k | fL is
nothing but comparing −e− k to the the number of trailing
zeros of the bit representation of fL. Some modern CPU’s
have instructions doing exactly that, but there are also sim-
ple ways of comparing those two without using such instruc-
tions. For example, produce q-bit mask consisting of−e−k
number of trailing ones padded with leading zeros, and per-
form bitwise AND with fL. If the result is zero, then fL has
at least−e−k number of trailing zeros, so 2−e−k divides fL.
If not, then 2−e−k does not divide fL. Or, we can perform
bitwise shifts of fL to the right and then to the left by−e−k
bits, and then compare the result with fL. Of course, doing
these bitwise operations might require some care regarding
the possibility −e− k ≥ q, but that is not a big deal. In fact,
one can derive that the inequality −e − k < q is equivalent
to

e ≥ −q + 1 + b−(q + α− 1) log5 2c .

3.9.5 Case V: fL = fc

This case is not really different from Case IV. From

x = fL · 2e+k · 5k,

again we conclude that x is an integer if and only if:

1. Either (q − p− 1) + e+ k ≥ 0 or 2−e−k | fL, and

2. Either k ≥ 0 and 5−k | fL,

and everything we have discussed for Case IV equally ap-
plies here as well.
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3.10 Checking If z is an Integer
In order to prevent the algorithm to return z as its output
when the right endpoint of the interval I is not included in
I , we need to know if z is an integer or not. This also can be
done similarly. Recall that

z = fR · 2e+k · 5k

and fR is one of f+m, f+, or fc, depending on the rounding
mode. More precisely,

1. fR = fc + 2q−p−2 if the rounding mode is one of round
to nearest’s.

2. fR = fc + 2q−p−1 if one of the following conditions are
satisfied:

(a) The rounding mode is round toward−∞ and the input
is a positive number, or

(b) The rounding mode is round toward +∞ and the input
is a negative number, or

(c) The rounding mode is round toward 0.

3. fR = fc if one of the following conditions are satisfied:

(a) The rounding mode is round toward +∞ and the input
is a positive number, or

(b) The rounding mode is round toward−∞ and the input
is a negative number, or

(c) The rounding mode is round away from 0.

Dealing with these are not different from Section 3.9. For the
Case I, we proceed just like Case II of 3.9, and for the Case
II and III, we proceed just like Case IV or V of 3.9.

3.11 Correct Rounding Search
3.11.1 Some Theoretical Conclusions
So far, we have seen how to find the greatest number with
the smallest number of digits in the given interval. Next, we
will see among those numbers with the smallest number of
digits, how to find out the one that is closest to the original
input number.

First of all, note that if our search interval is of the form
(w− · 10k, w · 10k], then we do not need to do any additional
things, because what we have found should be the one that is
closest to the original input. On the other hand, if the search
interval is of the form [w · 10k, w+ · 10k), then we just find
the smallest number with the same number of digits with the
number we have just found. This can be easily done using
binary search, for example. Therefore, we will only focus on
nearest rounding modes in this section.

For simplicity of presentation, let us assume we did not
need to find κ′, so

⌊
z

10κ

⌋
10κ is the greatest number in I

with the smallest number of digits. When κ′ was actually
necessary, we can just replace κ in the following discussions
by κ′.

Among all numbers with the same number of digits with⌊
z

10κ

⌋
10κ,

y(rd) :=

⌈
y

10κ
− 1

2

⌉
10κ and y(ru) :=

⌊
y

10κ
+

1

2

⌋
10κ

are the numbers that are closest to y. Note that these two are
actually same except only when the fractional part of y

10κ is
exactly 1

2 . In fact, these numbers are almost always in the
search interval I . To see why, first, note that⌊ y

10κ

⌋
≤
⌈
y

10κ
− 1

2

⌉
≤
⌊
y

10κ
+

1

2

⌋
≤
⌊ y

10κ

⌋
+ 1.

If the fractional part of y
10κ is strictly less than 1

2 , then the
first two inequalities are equalities, and if it is strictly greater
than 1

2 , then the last two inequalities are equalities. If it is
exactly 1

2 , then the first and the last inequalities are equali-
ties. We divide the analysis into several cases.

Case A: Suppose that⌊ y

10κ

⌋
=
⌊ z

10κ

⌋
.

In this case,
⌊
y

10κ

⌋
10κ is in I by definition of κ. 18 Hence,

when the fractional part of y
10κ is strictly less than 1

2 , we
always have y(rd) = y(ru) ∈ I . If the fractional part is
greater than or equal to 1

2 , which means

y

10κ
≥
⌊ y

10κ

⌋
+

1

2
, (11)

then we have

z − y
10κ

≤ z

10κ
−
⌊ y

10κ

⌋
− 1

2
.

Since y − x ≤ z − y in general, we get

y − x
10κ

≤ z

10κ
−
⌊ y

10κ

⌋
− 1

2
,

which can be rearranged as⌊ y

10κ

⌋
+ 1 ≤ z

10κ
−
(
y − x
10κ

− 1

2

)
. (12)

Note that since
⌊
y

10κ

⌋
10κ =

⌊
z

10κ

⌋
10κ ≥ x, thus we get

y

10κ
≥ x

10κ
+

1

2

from (11), which together with (12) implies(⌊ y

10κ

⌋
+ 1
)
10κ ≤ z.

18 In fact, when we replace κ by κ′, this might be no longer true. However,
the necessity of κ′ only arises when z

10κ
is an integer. Since y is strictly

less than z, this enforces
⌊

y

10κ
′

⌋
<

⌊
z

10κ
′

⌋
.
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In fact, since
⌊
z

10κ

⌋
10κ is the greatest integer in I∪{z}with

the smallest number of digits, this cannot happen. Thus, in
order to have ⌊ y

10κ

⌋
=
⌊ z

10κ

⌋
,

actually the fractional part of y
10κ must be strictly smaller

than 1
2 . Hence, we always have y(rd) = y(ru) ∈ I when⌊

y
10κ

⌋
=
⌊
z

10κ

⌋
.

Case B: Next, suppose that⌊ y

10κ

⌋
<
⌊ z

10κ

⌋
and that the fractional part of y

10κ is strictly bigger than 1
2 .

In this case,

y(rd) = y(ru) =
(⌊ y

10κ

⌋
+ 1
)
10κ ∈

(
x,
⌊ z

10κ

⌋
10κ
]
,

thus y(rd) = y(ru) is in I . Of course, this argument requires
some care when we need to replace κ by κ′, because in that
case

⌊
z

10κ′

⌋
10κ

′
may not be in I . Fortunately, we have no

issue even for that case. The only potentially problematic
case is when

z =
⌊ z

10κ′

⌋
10κ

′
=
(⌊ y

10κ′

⌋
+ 1
)
10κ

′
,

but then by definition of κ′, we have⌊ y

10κ′

⌋
10κ

′
∈ I,

so
⌊

y

10κ′

⌋
10κ

′ ≥ x in particular. Since the fractional part of
y

10κ′
is assumed to be strictly bigger than 1

2 , we have

y

10κ′
>
⌊ y

10κ′

⌋
+

1

2
≥ x

10κ′
+

1

2
, (13)

so
z − y
10κ′

≥ y − x
10κ′

>
1

2
.

However, this implies

z

10κ′
>

y

10κ′
+

1

2
>
⌊ y

10κ′

⌋
+ 1 =

z

10κ′

by (13), thus contradiction. Therefore, we always have
y(rd) = y(ru) ∈ I when

⌊
y

10κ

⌋
<
⌊
z

10κ

⌋
and the frac-

tional part of y
10κ is strictly bigger than 1

2 .

Case C: Next, suppose that⌊ y

10κ

⌋
<
⌊ z

10κ

⌋
and that the fractional part is strictly less than 1

2 . Thus, we
have

y

10κ
<
⌊ y

10κ

⌋
+

1

2
,

so it follows that

z − y
10κ

>
z

10κ
−
⌊ y

10κ

⌋
− 1

2
. (14)

When Fw 6= 1 or Ew = Emin, we always have

z − y = y − x,

thus the above inequality becomes

y − x
10κ

>
z

10κ
−
⌊ y

10κ

⌋
− 1

2
,

which can be rearranged as

x

10κ
+

(
z − y
10κ

− 1

2

)
<
⌊ y

10κ

⌋
in that case. By (14), we get

x

10κ
+
( z

10κ
−
⌊ y

10κ

⌋
− 1
)
<
⌊ y

10κ

⌋
.

By the assumption
⌊
y

10κ

⌋
<
⌊
z

10κ

⌋
, we have⌊ y

10κ

⌋
≤
⌊ z

10κ

⌋
− 1 ≤ z

10κ
− 1,

thus
x <

⌊ y

10κ

⌋
10κ ≤ y < z.

Hence, under the assumption Fw 6= 1 or Ew = Emin,
y(ru) = y(rd) =

⌊
y

10κ

⌋
10κ is always in I .

On the other hand, if Fw = 1 and Ew 6= Emin, then it
is possible to have y(ru) = y(rd) /∈ I . In this case, we must
have ⌊ y

10κ

⌋
≤ x

10κ
,

thus together with the assumption

y

10κ
<
⌊ y

10κ

⌋
+

1

2
,

we get
1

2
>
y − x
10κ

=
1

2
·
z − y
10κ

,

so
z

10κ
<

y

10κ
+ 1,

which implies⌊ z

10κ

⌋
≤
⌊ y

10κ

⌋
+ 1 ≤

⌊ z

10κ

⌋
.

Therefore, if Fw = 1, Ew 6= Emin, and y(ru) = y(rd) /∈ I ,
then

(⌊
y

10κ

⌋
+ 1
)
10κ =

⌊
z

10κ

⌋
10κ should be the unique

integer in I with the smallest number of digits. In summary,

• If Fw 6= 1 or Ew = Emin, then we always have y(ru) =
y(rd) ∈ I .

• Otherwise, it is possible to have y(ru) = y(rd) /∈ I , and
in this case

(⌊
y

10κ

⌋
+ 1
)
10κ =

⌊
z

10κ

⌋
10κ is the unique

integer in I with the smallest number of digits.
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Case D: Finally, suppose that⌊ y

10κ

⌋
<
⌊ z

10κ

⌋
and that the fractional part of y

10κ is equal to 1
2 . This case is

in fact a mixture of Case B and Case C. Recall that

y(rd) =
⌊ y

10κ

⌋
10κ, y(ru) =

(⌊ y

10κ

⌋
+ 1
)
10κ

in this case. By the same logic we used for Case C with
Fw = 1 and Ew 6= Emin, we should have that if Fw = 1,
Ew 6= Emin, and y(rd) /∈ I , then y(ru) =

⌊
z

10κ

⌋
10κ is the

unique integer in I with the smallest number of digits.
On the other hand, when Fw 6= 1 or Ew = Emin, by

applying the same logic as in Case C, it follows that

x ≤ y(rd) ≤ y < z.

Note that the equality x = y(rd) is only possible when we
have

z

10κ
=
⌊ y

10κ

⌋
+ 1,

thus y(rd) is always in I except when

δ = z − x = y(ru) − y(rd) = 10κ.

We will later show that this actually never happens. Hence,
we always have y(rd) ∈ I .

Next, let us analyze when we can possibly have y(ru) /∈ I .
By the same logic as in Case B, this can only happen when
z /∈ I and

z

10κ′
=

y

10κ′
+

1

2
=
⌊ y

10κ′

⌋
+ 1.

By definition of κ′, in this case y(rd) should be in I . Note
that in this case

y − x
10κ′

≤ z − y
10κ′

=
1

2
,

so ⌊ y

10κ′

⌋
=

y

10κ′
− 1

2
≤ x

10κ′
.

Thus, in order to have y(rd) ∈ I , in fact we should have
x = y(rd), and thus

δ = z − x = 10κ
′
.

Again, this cannot happen, so in fact we always have y(ru) ∈
I .

Now, we show that it is impossible to have δ = 10κ. By
definition of δ, we have

δ = z − x = (fR − fL) · 2e · 10k,

where

fR − fL =

{
3 · 2q−p−3 if Fw = 1 and Ew 6= Emin

2q−p−1 otherwise
.

Thus, if δ = 10κ for some κ ≥ 0, then we should have

fR − fL = 2q−p−1 = 2−e.

Hence, e = −(q− p− 1) and δ = 10k, so κ = k. Now, note
that

y = fc · 2e · 10k

and fc is an integer multiple of 2q−p−1 = 2−e, so y is an
integer multiple of 10k = 10κ. Therefore, the fractional part
of
⌊
y

10κ

⌋
cannot be equal to 1

2 .
In summary,

• If Fw 6= 1 or Ew = Emin, then we always have
y(ru), y(rd) ∈ I .

• Otherwise, still we always have y(ru) ∈ I , but it is
possible to have y(rd) /∈ I . When that happens, we have
y(ru) =

⌊
z

10κ

⌋
10κ.

Now, we will explain an algorithm to find the closest
integer in I with the same number of digits with

⌊
z

10κ

⌋
10κ.

We deal with the cases κ > 0 and κ = 0 separately.

3.11.2 The Search Algorithm for κ > 0

The very first thing to do is to compute bz − yc. For nota-
tional simplicity, let us denote

ε := z − y, ε(i) := bz − yc , and ε(f) := ε− ε(i).

Computation of ε(i) is basically same as that of z(i) or δ(i)

as we have seen in Section 3.7, but actually it is simpler,
because ε is always equal to 2q−p−2+e · 10k. Thus,

ε(i) =
⌊
2q−p−2−Q+βϕ̃k

⌋
,

which is nothing but the first q− p− 2+ β bits of ϕ̃k. Since

z =
⌊ z

10κ

⌋
10κ + rκ + z(f), 19

it follows that

y

10κ
± 1

2
=
⌊ z

10κ

⌋
− 1

10κ

(
ε(i) − rκ ∓

10κ

2

)
+
z(f) − ε(f)

10κ
,

therefore,⌈
y

10κ
− 1

2

⌉
=
⌊ z

10κ

⌋
−
⌊

1

10κ

(
ε(i) − rκ +

10κ

2

)
− z(f) − ε(f)

10κ

⌋
,

and similarly⌊
y

10κ
+

1

2

⌋
=
⌊ z

10κ

⌋
−
⌈

1

10κ

(
ε(i) − rκ −

10κ

2

)
− z(f) − ε(f)

10κ

⌉
.

19 When we did the κ′ search procedure, we use 0 instead of rκ.
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We will compute the above quantities.
First, consider

⌈
y

10κ −
1
2

⌉
. Since we have assumed κ > 0,

10κ

2 is an integer. Let

n :=

⌊
(ε(i) − rκ + (10κ/2))− (z(f) − ε(f))

10κ

⌋
=

⌊
(ε(i) − rκ − (10κ/2))− (z(f) − ε(f))

10κ

⌋
+ 1

so that ⌈
y

10κ
− 1

2

⌉
=
⌊ z

10κ

⌋
− n

and define
N := ε(i) − rκ −

10κ

2
,

then n is the unique nonnegative integer satisfying

10κ(n− 1) ≤ N − b < 10κn,

where

b :=

{
1 if z(f) > ε(f)

0 if z(f) ≤ ε(f)
.

We first find the unique n′ satisfying

10κn′ ≤ N < 10κ(n′ + 1).

Then we can conclude n = n′ + 1 except possibly when
10κn′ = N . This happens rarely, thus we can almost ignore
the fractional parts. Of course, when 10κn′ = N really is
the case, we do need to compare z(f) and ε(f). Similarly to
Section 3.9, this can be done by looking at the integer parts
of ε and y. Note that

y = z − ε = (z(i) − ε(i)) + (z(f) − ε(f)).

Therefore, z(f) > ε(f) if and only if

y > z(i) − ε(i).

To inspect this inequality, we first compute the integer part
of y using the method introduced in Section 3.7. Then, we
have

• If z(f) ≥ ε(f), then byc = z(i) − ε(i), and
• If z(f) < ε(f), then byc = z(i) − ε(i) − 1,

so by taking contrapositive, we can choose between z(f) ≥
ε(f) and z(f) < ε(f) by comparing byc and z(i)− ε(i). When
they are equal, we can further distinguish z(f) > ε(f) and
z(f) = ε(f) by checking if y is an integer using the method
introduced in Section 3.9. If z(f) > ε(f) is actually the case,
we conclude n = n′, and if not, we conclude n = n′ + 1.

Computation of n′ is basically the divisionN/10κ, which
is notoriously slow. However, we already know the list of
possible values of n: 0, 1, 2, 3, 4, 5, 6, 7, or 8. This is because
y(rd) is almost always in the search interval I , and there

should be no number in I which has less number of digits
than

⌊
z

10κ

⌋
10κ. Hence, y

(rd)

10κ and
⌊
z

10κ

⌋
should be identical

except possibly at the last digit. This is even true when y(rd)

is not in I , because in that case
⌊
z

10κ

⌋
and y(rd)

10κ should
differ by 1; see Section 3.11.1. Therefore, we can find out
n′ without computing division; instead, we can use binary
search.

In fact, we can further reduce the possible candidates for
n′. Note that

10κn′ ≤ N < ε.

If Fw 6= 1 or Ew = Emin, then ε = δ
2 , thus in this case we

have
10κ · 2n′ < δ.

This implies n′ ≤ 4; otherwise, we have 10κ+1 < δ,
which contradicts to the definition of κ.20 If Fw = 1 and
Ew 6= Emin, a similar argument can show n′ ≤ 6.

Since there are not many examples with Fw = 1 and
Ew 6= Emin, one can directly verify if n′ ≤ 6 is the tightest
upper bound. In our reference implementation [4], we have
experimentally verified that in fact we always have n′ ≤ 4
for the binary32 case and n′ ≤ 5 for the binary64 case. Even
for the binary64 case, inputs with n′ = 5 are extremely rare;
there are only 8 such inputs:

• ±5.5329046628180653e-222,
• ±5.6902623986817984e-160,
• ±5.5809931214954833e-104,
• ±5.2656145834278593e+64,

whose hexadecimal bit representations are

• 0x1200000000000000, 0x9200000000000000,
• 0x1ee0000000000000, 0x9ee0000000000000,
• 0x2a80000000000000, 0xaa80000000000000,
• 0x4d60000000000000, 0xcd60000000000000.

It is also worth mentioning that for uniformly randomly
generated inputs, the probability of having a small n′ is big-
ger than that of having a big n′. Hence, when implementing
the binary search, it is better to favor small n′’s rather than
dividing the interval evenly.21

If we did increasing search for κ (that is, 10κ0sκ0
∈ I; see

Section 3.8.2), we have computed 10κ and rκ, thus we can
proceed as described in the previous paragraph. If we did
decreasing search for κ (that is, 10κ0sκ0 /∈ I; see Section
3.8.1), we do not know 10κ and rκ. Instead, we know 10κ0

and 10κ0−κrκ. However, this is not a big problem because
we can just replace N by 10κ0−κN and 10κ by 10κ0 and
proceed.

20 We get a contradiction for both κ and κ′.
21 According to a test with uniformly randomly generated inputs, n′ = −1
with probability about 50%, n′ = 0 with probability about 30%, n′ = 1
or 2 or 3 with probability about 15%, and n′ = 4 with probability less than
1%.
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Next, consider
⌊
y

10κ + 1
2

⌋
. Let

n :=

⌈
(ε(i) − rκ − (10κ/2))− (z(f) − ε(f))

10κ

⌉
.

Note that

n =

⌊
(ε(i) − rκ − (10κ/2))− (z(f) − ε(f))

10κ

⌋
if the number inside b · c is an integer, and

n =

⌊
(ε(i) − rκ − (10κ/2))− (z(f) − ε(f))

10κ

⌋
+ 1

otherwise. Define

N := ε(i) − rκ −
10κ

2
,

then n is the unique nonnegative integer satisfying

10κ(n− 1) ≤ N − b < 10κn,

where

b :=

{
1 if z(f) ≥ ε(f)

0 if z(f) < ε(f)
.

Then the rest is similar to the case of
⌈
y

10κ −
1
2

⌉
.

Now, we know the exact value of y(rd) and y(ru). Next,
we need to check if they are inside I or not. Actually, we
need to check this only when Fw = 1, Ew 6= Emin, and the
difference between

⌊
z

10κ

⌋
10κ and y(rd) or y(ru) is exactly

10κ by the result of Section 3.11.1; or in other words, this
check is only necessary when n = 1. In that case, the check
can be done by comparing δ and

z − y(r) = rκ + 10κ + z(f),

where y(r) is either y(rd) or y(ru). If the above quantity is
greater than (or greater than or equal to depending on the
boundary condition) δ, then y(r) is not in I so we need to
return

⌊
z

10κ

⌋
10κ instead.22

3.11.3 The Search Algorithm for κ = 0

In this case, we cannot isolate the consideration of fractional
parts of z and ε with integer parts easily. Instead, we utilize
the followings:

y(rd) =

⌈
y − 1

2

⌉
=

⌈
2y − 1

2

⌉
=

⌊
d2ye
2

⌋
,

y(ru) =

⌊
y +

1

2

⌋
=

⌊
2y + 1

2

⌋
=

⌊
b2yc+ 1

2

⌋
.

To see why these are true, write 2y = 2k + ρ or 2y =
2k+1+ ρ for some 0 ≤ ρ < 1 and a nonnegative integer k.
For the first case,⌈

2y − 1

2

⌉
=

⌈
k − 1− ρ

2

⌉
= k =

⌊
d2ye
2

⌋
22 In our reference implementation [4], we simplified the comparison of the
fractional parts using some test results.

and ⌊
2y + 1

2

⌋
=

⌊
k +

1 + ρ

2

⌋
= k =

⌊
b2yc+ 1

2

⌋
and for the second case,⌈

2y − 1

2

⌉
=
⌈
k +

ρ

2

⌉
=

{
k if ρ = 0

k + 1 otherwise

=

⌊
d2ye
2

⌋
and⌊

2y + 1

2

⌋
=
⌊
k + 1 +

ρ

2

⌋
= k + 1 =

⌊
b2yc+ 1

2

⌋
.

Hence, by computing b2yc and d2ye, we can compute y(rd)

and y(ru). Since d2ye = b2yc + 1 if and only if 2y is
not an integer and d2ye = b2yc if and only if 2y is an
integer, we can compute d2ye by first computing b2yc and
then check if 2y is an integer using a method similar to that
introduced in Section 3.9. More concretely, one can show
that 2y = fc · 2e+k+1 · 5k is an integer if and only if:

1. b−(q − p+ α) log5 2c − (q − p) ≤ e ≤ α+ 2, or

2. e ≥ α+ 3 and 5−k | fc, or

3. e ≤ b−(q − p+ α) log5 2c−(q−p+1) and 2−e−k−1 | fc.

Therefore, our first goal is to compute b2yc. This can be
done just like bzc or bδc as introduced in Section 3.7, after
replacing β by β + 1. However, one need to be careful that
unless γ ≤ −1,23 the result can overflow. Hence, if γ = 0,
we just take the least significant bit of the result and then
compute byc instead. In this way, we can compute y(rd) and
y(ru).

Unlike the case κ > 0, in this case in fact we can be sure
that y(rd) and y(ru) computed above are actually inside I .
Recall from Section 3.11.1 that we know

z − y ≤ 1

whenever y(rd) or y(ru) is not in I . Note that this implies

δ ≤ 2(z − y) ≤ 2.

However, for nearest rounding modes, we have

δ = (f+m − f−m)ϕk2
−Q2β

≥ 3 · 2q−p−3 · 2Q−1 · 2−Q · 2β

= 3 · 2q−p−4 · 2β ≥ 3 · 2q−p−4+α ≥ 3

since α ≥ −(q− p− 4), thus y(rd) and y(ru) should be in I .

23 Our assumption on γ in Section 3.6 is γ ≤ 0. However, our preferred
choice of γ is −2, anyway.
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3.11.4 Choosing Between y(rd) and y(ru)

When y(rd) and y(ru) are both in I and they are different, we
need to choose between them. There may be many different
ways to make the choice, but perhaps the standard one would
be to prefer the even number whenever we have to choose
between two.

4. Correctness of Integer Part Computation
The paper [2] introduced a way to compute a good upper
bound on the required amount of bits to reliably compute⌊
x · 10k

⌋
. The paper introduced the following two lemmas;

the proofs of these lemmas, which are presented in the orig-
inal paper, are included in this paper for completeness.

Lemma 4.1 (Adams, 2018).
Let k be a nonnegative integer, b an integer, and g a positive
integer. Then for any integer u satisfying

u > b+ log2
5kg

5k − (2bg mod 5k)
,

we have ⌊
g · 2b

5k

⌋
=

⌊
g · 2b−u

(⌊
2u

5k

⌋
+ 1

)⌋
.

Proof. Define

δ := g · 2b−u
(⌊

2u

5k

⌋
+ 1

)
−
⌊
g · 2b

5k

⌋
,

then it suffices to show that 0 ≤ δ < 1. First, δ ≥ 0 is
obvious because

δ > g · 2b−u
2u

5k
− g · 2b

5k
= 0.

To show δ < 1, note that we have

2u−b >
5kg

5k − (2bg mod 5k)

from the assumption on u. Hence,

g · 2b−u < 1− 1

5k
(
(g · 2b) mod 5k

)
= 1− 1

5k
· 5k
(
g · 2b

5k
−
⌊
g · 2b

5k

⌋)
,

so

g · 2b−u +
g · 2b

5k
−
⌊
g · 2b

5k

⌋
< 1,

and from
g · 2b

5k
≥ g · 2b−u

⌊
2u

5k

⌋
,

we conclude

δ = g · 2b−u + g · 2b−u
⌊
2u

5k

⌋
−
⌊
g · 2b

5k

⌋
< 1.

Lemma 4.2 (Adams, 2018).
Let k be a nonnegative integer, b an integer, and g a positive
integer. Then for any integer l satisfying

l ≤ log2 max

{
1,

5kg mod 2b

g

}
,

we have ⌊
g · 5k

2b

⌋
=

⌊
g · 2l−b

⌊
5k

2l

⌋⌋
.

Proof. The equality trivially holds for l ≤ 0, thus we may
assume

1 ≤ 5kg mod 2b

g
.

Define

δ := g · 2l−b
⌊
5k

2l

⌋
−
⌊
g · 5k

2b

⌋
,

then it suffices to show that 0 ≤ δ < 1. First, δ < 1 is
obvious because

δ ≤ g · 2l−b
5k

2l
−
⌊
g · 5k

2b

⌋
=
g · 5k

2b
−
⌊
g · 5k

2b

⌋
< 1.

To show δ ≥ 0, note that we have

2l ≤ 5kg mod 2b

g

from the assumption on l. Hence,

g · 2l−b ≤ 1

2b
(
(g · 5k) mod 2b

)
=

1

2b
· 2b
(
g · 5k

2b
−
⌊
g · 5k

2b

⌋)
,

so
g · 5k

2b
− g · 2l−b −

⌊
g · 5k

2b

⌋
≥ 0,

and from

g · 2l−b
⌊
5k

2l

⌋
> g · 2l−b

(
5k

2l
− 1

)
=
g · 5k

2b
− g · 2l−b,

we conclude

δ = g · 2l−b
⌊
5k

2l

⌋
−
⌊
g · 5k

2b

⌋
> 0.

Based on these lemmas, we will justify computations in
Section 3.7 and Section 3.11.3. Note that⌊

f · 2e · 10k
⌋
=
⌊
g · 2q−p−2+e+k · 5k

⌋
or ⌊

f · 2e · 10k
⌋
=
⌊
(2p+2 − 1) · 2q−p−3+e+k · 5k

⌋
for some nonnegative integer g ∈ [0, 2p+2], where f is one
of fc, f−, f+, f−m, and f+m. Since the case f = 0 is vacuous,
we assume f 6= 0, so g ∈ [1, 2p+2]. Also,⌊

2fc · 2e · 10k
⌋
=
⌊
g · 2q−p+e+k · 5k

⌋
for some positive integer g ∈ [1, 2p+1 − 1].
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4.1 Case I: k < 0

First, consider the case k < 0. Recall from Section 3.9
that k < 0 is equivalent to e ≥ α + 3, and this implies
(q − p− 3) + e+ k ≥ 0. Therefore,

⌊
f · 2e · 10k

⌋
is indeed

of the form ⌊
g · 2b

5−k

⌋
for some b ≥ 0. By Lemma 4.1, we know

⌊
f · 2e · 10k

⌋
=

⌊
f · 2e+k−u ·

(⌊
2u

5−k

⌋
+ 1

)⌋
if u satisfies

u ≥ (q − p− 2) + e+ k + 1

+ max
g=1, ··· ,2p+2

⌊
log2

5−kg

5−k − (2(q−p−2)+e+kg mod 5−k)

⌋
and

u ≥ (q − p− 3) + e+ k + 1

+

⌊
log2

5−k(2p+2 − 1)

5−k − (2(q−p−3)+e+k(2p+2 − 1) mod 5−k)

⌋
.

Also, we have

⌊
2fc · 2e · 10k

⌋
=

⌊
fc · 2e+k+1−u ·

(⌊
2u

5−k

⌋
+ 1

)⌋
if u satisfies

u ≥ (q − p− 2) + e+ k + 2

+ max
g=1, ··· ,2p+1

⌊
log2

5−kg

5−k − (2(q−p)+e+kg mod 5−k)

⌋
.

We want to set

u = k − ek = k − bk log2 10c+Q− 1

= Q− bk log2 5c − 1,

so that

ϕ̃k :=

⌊
2u

5−k

⌋
+ 1 =

⌊
2u−k · 10k

⌋
+ 1

=
⌊
ϕk · 2u−k+ek

⌋
+ 1 = bϕkc+ 1.

Therefore, in order to guarantee correctness of computations
in Section 3.7 and Section 3.11.3, it is sufficient that Q
satisfies the following three inequalities for all e ≥ α+ 3:

1.

Q ≥ q + e+ bk log2 10c+ 2+

max
g=1, ··· ,2p+2

⌊
log2

5−k

5−k − (2(q−p−2)+e+kg mod 5−k)

⌋
,

2.

Q ≥ q + e+ bk log2 10c+ 1+⌊
log2

5−k

5−k − (2(q−p−3)+e+k(2p+2 − 1) mod 5−k)

⌋
,

3.

Q ≥ q + e+ bk log2 10c+ 2+

max
g=1, ··· ,2p+1

⌊
log2

5−k

5−k − (2(q−p)+e+kg mod 5−k)

⌋
.

Using the min-max Euclid algorithm introduced in [2] (see
Section 4.3), one can computationally verify that Q = 2q
satisfies all of these inequalities for both binary32 and bi-
nary64 formats, with our specific choice of α; see Figure 1.
Our reference implementation [4] includes a program com-
puting these lower bounds shown on the figure.

4.2 Case II: k ≥ 0

Next, consider the case k ≥ 0. Recall from Section 3.9 that
k ≥ 0 is equivalent to e ≤ α+ 2. By Lemma 4.2, we know⌊

f · 2e · 10k
⌋
=

⌊
f · 2l+e+k ·

⌊
5k

2l

⌋⌋
if l satisfies

l ≤ max

{
0, min
g=1, ··· ,2p+2

⌊
log2

5kg mod 2−e−k−(q−p−2)

g

⌋}
and

l ≤ max

{
0,

⌊
log2

5k(2p+2 − 1) mod 2−e−k−(q−p−3)

2p+2 − 1

⌋}
.

Also, we have⌊
2fc · 2e · 10k

⌋
=

⌊
fc · 2l+e+k+1 ·

⌊
5k

2l

⌋⌋
if l satisfies

l ≤ max

{
0, min
g=1, ··· ,2p+1

⌊
log2

5kg mod 2−e−k−(q−p)

g

⌋}
.

We want to set

l = ek − k = bk log2 10c −Q+ 1− k
= bk log2 5c −Q+ 1,

so that

ϕ̃k :=

⌊
5k

2l

⌋
=
⌊
2−k−l · 10k

⌋
=
⌊
ϕk · 2ek−k−l

⌋
= bϕkc .

Therefore, in order to guarantee correctness of computations
in Section 3.7 and Section 3.11.3, it is sufficient that Q
satisfies the following three inequalities for all e ≤ α+ 2:
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Figure 1. Lower bounds on Q for each e with k < 0 (top:
binary32, bottom: binary64); the maximum value is 57 for
binary32, 125 for binary64.

1.

Q ≥ bk log2 5c+ 1−max

{
0,−p− 2+

min
g=1, ··· ,2p+2

⌊
log2

(
5kg mod 2−e−k−(q−p−2)

)⌋}
,

2.

Q ≥ bk log2 5c+ 1−max

{
0,−p− 2+⌊

log2

(
5k(2p+2 − 1) mod 2−e−k−(q−p−3)

)⌋}
,
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Figure 2. Lower bounds on Q for each e with k ≥ 0 (top:
binary32, bottom: binary64); the maximum value is 61 for
binary32, 125 for binary64.

3.

Q ≥ bk log2 5c+ 1−max

{
0,−p− 1+

min
g=1, ··· ,2p+1

⌊
log2

(
5kg mod 2−e−k−(q−p)

)⌋}
.

Again, using the min-max Euclid algorithm introduced in [2]
(see Section 4.3), one can computationally verify that Q =
2q satisfies all of these inequalities for both binary32 and
binary64 formats, with our specific choice of α; see Figure
2. Our reference implementation [4] includes a program
computing these lower bounds shown on the figure.

4.3 Min-Max Euclid Algorithm
In order to compute lower bounds given in Section 4.1 and
Section 4.2, we need to compute the minimum and the max-
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imum of numbers of the form

ag mod b

where a, b are powers of 2 or 5, and g runs over a range
[1, N ] ∩ Z. Since N is very large (∼ 225 or ∼ 254), it
is computationally too heavy to compute the minimum and
the maximum directly. To resolve this issue, [2] introduced
a nice algorithm, which the author called min-max Euclid
algorithm, to compute conservative bounds on these values.

In this paper, we propose a variant of this algorithm which
runs much faster than the original one, yet returning the ex-
act minimum and maximum.24 In our machine, the cache
length verification program included in the reference imple-
mentation [4] runs in less than a second without any opti-
mization enabled.

A pseudocode for our algorithm is given in Figure 3. The
basic idea of the algorithm can be explained as follows.
For simplicity, let us assume a < b and gcd(a, b) = 1.
(The algorithm is still correct without these assumptions.)
First, note that if g ≤

⌊
b
a

⌋
, then ag mod b monotonically

increases as g increases. Now, when g becomes
⌊
b
a

⌋
+ 1,

we have ag mod b = ag − b, that is, we wrap around to
come back to 0 and go a little further. After that, ag mod b
will keep increasing until we need to wrap around again.
Note that, if we have proceeded

⌊
b
a

⌋
more steps, the dis-

tance between the right boundary (b) and the current number
(ag mod b) should be the twice of that for the first round,
which is b mod a. If the distance 2(b mod a) is still less
than a, the maximum value is untouched until the next round.
The maximum value is finally touched after k rounds when
k(b mod a) is now greater than or equal to a. Therefore, af-
ter the first round, the number of steps required to update the
new maximum value is much longer, and this required num-
ber of steps keeps increasing after each of the updates in the
same manner.

Of course, a similar thing happens for the minimum
value. After the first round, the minimum value becomes
a − (b mod a). After k following rounds, the minimum
value will keep decreasing until a − k(b mod a) becomes
smaller than (b mod a). Since then, the minimum value will
not change for a long time.

Let us analyze the situation more precisely. We do not
assume a < b nor gcd(a, b) = 1 from now on. Inductively
define ai, bi as a0 := a, b0 := b, and

ai+1 := ai − pibi+1, bi+1 := bi − qiai

24 In fact, (we believe that) the proof of the original algorithm is not entirely
correct. For example, the paper claims that a ≤ (−a mod b), which is
of course not true when a > b/2. It seems that claims about negative
multiples in general have some problem. The algorithm itself, as written,
is also not correct; for example, if (a, b,N) = (3, 8, 7), the output of the
algorithm is that the minimum is 1 while the maximum is 0, which is of
course a nonsense. This is probably related to mistakes in the proof, and
our improved algorithm does not have such an issue.

1 // a, b, N are positive integers
2 // Returns: (minimum,maximum)
3 minmax_euclid(a, b, N) {
4 ai ← a, bi ← b
5 si ← 1, ui ← 0
6 while (true) {

7 qi ←
⌈
bi
ai

⌉
− 1

8 bi+1 ← bi − qiai
9 ui+1 ← ui + qisi

10

11 if (N < ui+1) {

12 k ←
⌊
N−ui
si

⌋
13 return (ai, b− bi + kai)
14 }
15

16 pi ←
⌈
ai
bi+1

⌉
− 1

17 ai+1 ← ai − pibi+1

18 si+1 ← si + piui+1

19

20 if (N < si+1) {

21 k ←
⌊
N−si
ui+1

⌋
22 return (ai − kbi+1, b− bi+1)
23 }
24

25 if (bi+1 = bi and ai+1 = ai) {
26 if (N < si+1 + ui+1) {
27 return (ai+1, b− bi+1)
28 }
29 else {
30 return (0, b− bi+1)
31 }
32 }
33

34 bi ← bi+1, ui ← ui+1

35 ai ← ai+1, si ← si+1

36 }
37 }

Figure 3. Improved min-max Euclid algorithm
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where

pi :=

⌈
ai
bi+1

⌉
− 1, qi :=

⌈
bi
ai

⌉
− 1.

We also inductively define si, ti, ui, vi as s0 = 1, t0 = 0,
u0 = 0, v0 = 1, and{

si+1 = si + piui+1

ti+1 = ti + pivi+1

,

{
ui+1 = ui + qisi

vi+1 = vi + qiti
.

The followings are well-known facts about extended Eu-
clidean algorithm:

Fact 1. gcd(ai, bi) = gcd(ai, bi+1) = gcd(ai+1, bi+1) for all i.

Fact 2. The sequence of ai’s and bi’s are strictly decreasing until
one of them reaches to d := gcd(a, b), except possibly
for b0 and b1; more precisely, we have

d ≤ · · · < ai+1 < bi+1 < ai < · · · < b1 < a0

and if bi = d for some i, then ai = d, and if ai = d for
some i, then bi+1 = d.

Fact 3. si, ti, ui, vi are the smallest nonnegative numbers satis-
fying the relation

asi − bti = ai, bvi − aui = bi. (15)

The first fact follows trivially from the definition. The sec-
ond fact is also an easy conclusion from the definition. For
the third fact, it is easy to verify using the induction that the
relation is true for all i, and to show that si, ti, ui, vi are the
smallest nonnegative integers satisfying them, note the fol-
lowing linear recurrence relations:(

si+1 ti+1

ui+1 vi+1

)
=

(
pi 1
1 0

)(
ui+1 vi+1

si ti

)
,(

ui+1 vi+1

si ti

)
=

(
qi 1
1 0

)(
si ti
ui vi

)
.

Note that the determinants of the coefficient matrices are

equal to −1. Since the determinant of
(
s0 t0
u0 v0

)
is 1, it

follows that we always have

sivi − tiui = 1, ui+1ti − vi+1si = −1.

This shows that gcd(si, ti) = 1 and gcd(ui, vi) = 1 for all
i. Now, note that for some i0 we should have ai0 = d and
bi0 = d. Hence,

asi0 − bti0 = bvi0 − aui0 = d,

so
a(si0 + ui0) = b(ti0 + vi0).

This implies b
d divides si0 + ui0 and a

d divides ti0 + vi0 , so
we can write

si0 + ui0 =
kb

d
, ti0 + vi0 =

ka

d

for some nonnegative integer k. Note that

si0(ti0 + vi0)− ti0(si0 + ui0) = si0vi0 − ti0ui0 = 1,

thus si0 + ui0 and ti0 + vi0 are coprime to each other. This
enforces k = 1, thus

si0 + ui0 =
b

d
, ti0 + vi0 =

a

d
.

In particular, we conclude

si, ui ≤
b

d
, ti, vi ≤

a

d

for all i, since si, ti, ui, vi are all increasing. In fact, the in-
equalities are strict except for very exceptional cases. In-
deed, if si = b

d for some i, then the same equality holds
for all bigger i’s, so ui = 0 for all such i’s, which then im-
plies ui = 0 for all i. Therefore, in this case we must have
bvi = bi for all i, thus b = bi = d for all i. On the other hand,
if ti = a

d for some i, then similarly we conclude vi = 0 for
all i, but then −aui = bi, which is impossible so this never
happens. In the same way, we cannot have ui = b

d and we
can have vi = a

d only when a = ai = d for all i.
This indeed implies the third fact: for any integers s, t

satisfying
as− bt = ai,

we have
a(si − s)− b(ti − t) = 0,

which implies that b
d divides si − s and a

d divides ti − t.
Hence, if s is strictly smaller than si, then si shuold be at
least s + d

b . Hence, s should be a nonnegative number, but
clearly s cannot be 0 because otherwise we have −bt = ai
which is of course impossible. Similar reasoning shows that
ti, ui, vi are the smallest nonnegative integers as well.

Using these facts, let us analyze the algorithm given in
Figure 3 more precisely.

Theorem 4.3 (Min-max Euclid algorithm).
Let g be a positive integer.

1. If g < ui+(k+1)si for some nonnegative integers i and
0 ≤ k < qi, then

(ag mod b) ≤ b− (bi − kai).

The equality is achieved if and only if g = ui + ksi.
2. If g < si + (k + 1)ui+1 for some nonnegative integers i

and 0 ≤ k < pi, then

(ag mod b) ≥ ai − kbi+1.

The equality is achieved if and only if g = si + kui+1.

Proof. We use induction on i. Consider the base case i = 0
first. Note that u0+ ks0 = k, so g < u0+(k+1)s0 implies
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g ≤ k. Hence, when k = 0, the first part of the theorem is
vacuously true. When k > 0, k < q0 =

⌈
b
a

⌉
− 1 implies

(ag mod b) = ag = b− (b0 − ga0),

thus we have the first part. For the second part, note that we
may assume a < b since otherwise u1 = q0s0 = 0 so there is
no g satisfying the condition. Also, without loss of generality
we can assume g ≥ s0 + ku1 by separately considering the
ranges [s0+k′u1, s0+(k′+1)u1) for k′ = 0, · · · , k. Then
the condition on g can be written as

1 + kq0 ≤ g ≤ (k + 1)q0.

Hence, using b = q0a+ b1, it follows that

k +
a− kb1

b
≤ ag

b
≤ k + 1− (k + 1)b1

b
.

From the condition 0 ≤ k < p1, we have 0 < a1 <
a− kb1 ≤ a < b and 0 < (k + 1)b1 < a < b, so both of the
sides are real numbers in the interval [k, k + 1). Therefore,
it follows that ⌊ag

b

⌋
= k.

Hence,

(ag mod b) = ag − kb

≥ b
(
k +

a− kb1
b

)
− kb

= a− kb1,

and of course the equality is achieved if and only if g =
1 + kq0, so the second claim is also proved.

Next, let us consier the induction step; let i > 0 and
suppose that the conclusion of the theorem is true for all
j < i. For the first part of the theorem, again we can assume
that g satisfies

ui + ksi ≤ g < ui + (k + 1)si

for some 0 ≤ k < qi. Define

s := (ui + (k + 1)si)− g,

then we know 0 < s ≤ si. Note that this implies that either
s = si or

sj + luj+1 ≤ s < sj + (l + 1)uj+1

for some j < i and 0 ≤ l < pj . Indeed, if s < si,
then since sj’s increase to si, we can choose sj such that
sj ≤ s < sj+1. Then, since sj+1 = sj + pjuj+1, choose
l =

⌊
s−sj
uj+1

⌋
then we have the desired inequality.

Note that if s = si, then from Fact 3 we know

(as mod b) = ai,

and otherwise, by the induction hypothesis we have

(as mod b) ≥ aj − lbj+1 > aj+1 ≥ ai.

Hence, let t :=
⌊
as
b

⌋
, then

as− bt = (as mod b) ≥ ai.

Since
asi − bti = ai, bvi − aui = bi,

we have

b(vi + (k + 1)ti)− a(ui + (k + 1)si) = bi − (k + 1)ai,

thus it follows that

b(vi + (k + 1)ti − t)− ag ≥ bi − kai. (16)

Since k < qi, the right-hand side is in the interval (0, b]. We
claim that the left-hand side is not more than b, so that

0 ≤ ag − b(vi + (k + 1)ti − 1) ≤ b− (bi − kai) < b,

concluding

(ag mod b) ≤ b− (bi − kai).

Note that the inequality (16) is an equality if and only if

as− bt = ai+1

if and only if s = si. Hence, to show the claim we can
assume s < si, so

sj + luj+1 ≤ s < sj + (l + 1)uj+1

for some j < i and 0 ≤ l < pj . Define

u := (sj + (l + 1)uj+1)− s,

then we know 0 < u ≤ uj+1. Since j < i, the induction
hypothesis (with k = 0) implies that

(au mod b) ≥ aj .

Define v :=
⌊
au
b

⌋
+ 1, then

aj ≤ au− b(v − 1) < b,

so
0 < bv − au ≤ b− aj .

Since

asj − btj = aj , bvj+1 − auj+1 = bj+1,

we have

a(sj + (l + 1)uj+1)− b(tj + (l + 1)vj+1)

= aj − (l + 1)bj+1,
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thus it follows that

as− b(tj + (l + 1)vj+1 − v) ≤ b− (l + 1)bj+1.

Since the left-hand side is a positive number (because it
is the sum of two positive numbers), it follows that t =
tj + (l + 1)vj+1 − v and

as− bt ≤ b− (l + 1)bj+1 ≤ b− (l + 1)bi ≤ b− bi.

Consequently,

b(vi + (k + 1)ti − t)− ag
= (bi − (k + 1)ai) + (as− bt)
≤ b− (k + 1)ai < b,

so the claim is proved. Also, we have

(ag mod b) = b− (bi − kai)

if and only if s = si if and only if g = ui + ksi, so the first
part of the induction step is proved.

Now, we show the second part. This part is in fact almost
identical to the previous part. Again we can assume that g
satisfies

si + kui+1 ≤ g < si + (k + 1)ui+1

for some 0 ≤ k < pi. Define

u := (si + (k + 1)ui+1)− g,

then we know 0 < u ≤ ui+1. Note that this implies either
u = ui+1 or

uj + lsj ≤ u < uj + (l + 1)sj

for some j ≤ i and 0 ≤ l < qj . If u = ui+1, then from Fact
3 we know

(au mod b) = b− bi+1,

and otherwise, by the induction hypothesis and the first part
of the induction step, we have

(au mod b) ≤ b− (bj − laj) < b− bj+1 ≤ b− bi+1.

Hence, let v :=
⌊
au
b

⌋
+ 1, then

bv − au = b− (au mod b) ≥ bi+1.

Since

asi − bti = ai, bvi+1 − aui+1 = bi+1,

we have

a(si + (k + 1)ui+1)− b(ti + (k + 1)vi+1)

= ai − (k + 1)bi+1,

thus it follows that

ag − b(ti + (k + 1)vi+1 − v) ≥ ai − kbi+1. (17)

Since k < pi, the right-hand side is in the interval (0, b]. We
claim that the left-hand side is not more than b, so that

(ag mod b) ≥ ai − kbi+1.

Note that the inequality (17) is an equality if and only if

bv − au = bi+1

if and only if u = ui+1. Hence, to show the claim we can
assume u < ui+1, so

uj + lsj ≤ u < uj + (l + 1)sj

for some j ≤ i and 0 ≤ l < qj . Define

s := (uj + (l + 1)sj)− u,

then we know 0 < s ≤ sj . Since j ≤ i, the induction
hypothesis together with the first part of the induction step
(with k = 0) implies that

(as mod b) ≤ b− bj .

Define t :=
⌊
as
b

⌋
, then

0 ≤ as− bt < b− bj .

Since
asj − btj = aj , bvj − auj = bj ,

we have

b(vj + (l + 1)tj)− a(uj + (l + 1)sj) = bj − (l + 1)aj ,

thus it follows that

b(vj + (l + 1)tj − t)− as ≤ b− (l + 1)aj .

Since the left-hand side is a positive number (because it is
the sum of a positive number and a nonnegative number), it
follows that v = vj + (l + 1)tj − t and

bv − au ≤ b− (l + 1)aj ≤ b− (l + 1)ai ≤ b− ai.

Consequently,

ag − b(ti + (k + 1)vi+1 − v)
= (ai − (k + 1)bi+1) + (bv − au)
≤ b− (k + 1)bi+1 < b,

so the claim is proved. Also, we have

(ag mod b) = ai − kbi+1

if and only if u = ui+1 if and only if g = si + kui+1, so the
second part of the induction step is also proved.
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By the theorem, we get the following strategy for finding
the minimum and the maximum of (ag mod b):

1. Find the minimum i such that N < si+1 or N < ui+1.

2. If N < ui+1, then find 0 ≤ k < qi such that

ui + ksi ≤ N < ui + (k + 1)si.

Since si ≤ N < ui+1, we conclude from Theorem 4.3
that the minimum is ai (achieved when g = si) and the
maximum is b−(bi−kai) (achieved when g = ui+ksi).

3. If ui+1 ≤ N < si+1, then find 0 ≤ k < pi such that

si + kui+1 ≤ N < si + (k + 1)ui+1.

Sinec ui+1 ≤ N < si+1, we conclude from Theorem
4.3 that the minimum is ai − kbi+1 (achieved when
g = si + kui+1) and the maximum is b− bi+1 (achieved
wheen g = ui+1).

4. For the case when there is no such i, let i0 be such
that ai0 = bi0 = gcd(a, b). Then since N ≥ ui0 , the
maximum should be equal to b − gcd(a, b), which is
the maximum possible value of all numbers of the form
(ag mod b). Next, check if N < si0 + ui0 = b

gcd(a,b) .
Note that g = b

gcd(a,b) is the smallest positive number
such that (ag mod b) = 0, thus ifN < si0+ui0 , then we
can infer that the minimum cannot be 0. However, since
N ≥ si0 , the minimum should be equal to gcd(a, b). Of
course, if N ≥ si0 + ui0 , then the minimum is equal to
0.

Then now it is easy to see that Figure 3 is indeed an
implementation of this strategy.

5. Benchmark Results
We did a benchmark testing performances of Grisu-Exact,
Grisu-Exact without performing correct rounding search
(that is, omitting the procedure explained in Section 3.11),
and Ryū, for the task of producing a decimal string repre-
sentation of a given floating-point number. The source code
for the benchmark is contained in our reference implementa-
tion [4]. As advertised before, Grisu-Exact outperforms Ryū
in small-digits regime. For example, according to the bench-
mark results shown in Figure 4, when the number of digits
is 2, the average performances are:

• Grisu-Exact: 20.25 ns (binary32), 34.34 ns (binary64)
• Grisu-Exact without correct rounding search: 20.17 ns

(binary32), 33.18 ns (binary64)
• Ryū: 33.83 ns (binary32), 62.34 ns (binary64)

and when the number of digits is 6, the average performaces
are:

• Grisu-Exact: 23.01 ns (binary32), 35.13 ns (binary64)
• Grisu-Exact without correct rounding search: 22.54 ns

(binary32), 35.02 ns (binary64)

• Ryū: 26.84 ns (binary32), 53.57 ns (binary64)

Thus, for binary64, Grisu-Exact is about 80% faster than
Ryū when the number of digits is 2, and is about 50% faster
than Ryū when the number of digits is 6, according to the
benchmark results.

However, Grisu-Exact’s performance is not really better
than Ryū when the number of digits is very large, as shown
in Figure 4. According to our benchmarks, it performs worse
for binary32-encoded numbers with 8 or 9 digits, and it
performs slightly better for binary64-encoded numbers with
many digits but the difference is not huge. Since most exist-
ing floating-point numbers are of almost maximum length,
it is expected that Grisu-Exact performs slightly worse than
Ryū for binary32 and slightly better than Ryū for binary64
if subjected to uniformly randomly generated floating-point
numbers. However, for binary32 format, there are less than
expected many numbers with more than 7 digits. According
to a test, among randomly generated binary32-encoded num-
bers with 8 digits, about 41.8% of them turned out to have
a shorter representation, and for numbers with 9 digits, that
percentage is about 99.6%. Because of this, actually Grisu-
Exact can outperform Ryū even for binary32 for uniformly
randomly generated numbers, as shown in Figure 5. Accord-
ing to the benchmark results shown in Figure 5, the average
performance of Grisu-Exact is about 0 ∼ 1% faster than
Ryū for binary32-encoded data and about 7 ∼ 8% faster
than Ryū for binary64-encoded data.

Nevertheless, practical input data of float-to-string con-
version will not be uniformly distributed. By (mis)applying
Zipf’s law, it seems reasonable to assume that the distribu-
tion of the number of digits of input data might be roughly
uniform. If that is indeed the case, then Grisu-Exact will cer-
tainly outperform Ryū. According to our benchmarks, the to-
tal averages of average performances over all possible num-
bers of digits are:

1. Grisu-Exact: 22.80 ns (binary32), 36.07 ns (binary64)

2. Grisu-Exact without correct rounding search: 22.22 ns
(binary32), 35.62 ns (binary64)

3. Ryū: 28.96 ns (binary32), 50.75 ns (binary64)

Hence, if we assume the uniform distribution of number
of digits, Grisu-Exact is about 27% faster than Ryū for
binary32 data and is about 41% faster than Ryū for binary64
data, according to the benchmark results shown in Figure 4.

5.1 Some Notes on Our Benchmarks
5.1.1 Random Floating-Point Numbers with Given

Number of Digits
It is not easy to uniformly randomly generate a floating-point
number with the given number of digits. Our method is to
uniformly randomly generate an integer with the given num-
ber of digits, combine it with a uniformly randomly gen-
erated exponent (among all valid decimal exponents) and a
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Grisu-Exact (w/o correct rounding)
Ryu

Figure 4. Performances of Grisu-Exact, Grisu-Exact without performing correct rounding search, and Ryū for random
floating-point numbers with given number of digits; solid lines are averages, dashed lines are medians, and shaded regions
show 30%, 50%, and 70% percentiles. (top: binary32, bottom: binary64)

uniformly randomly generated sign, convert the result into
a string, and then convert it back to a floating-point num-
ber. If the resulting string does not fall in the valid range or
if there exists a shorter representation of the same floating-
point number, then discard the number and regenerate. Of
course, this will not give us the uniform distribution, because
the ratio of collision will not be uniform. Nonetheless, one
can claim this will give a reasonable approximation to the
uniform distribution especially when the number of digits is
small. When the number of digits is close to the maximum,
the deviation from the uniform distribution might be fairly
large, but we could not think of a better way to correctly pro-

duce a random floating-point number with a given number of
digits. With this method, we produced and tested 100, 000
random floating-point numbers for each given number of
digits and for each of binary32 and binary64. We used the
same data set for all the algorithms. Since the algorithms run
in the nanosecond regime, we repeated each test case 1, 000
times to measure the performance more reliably.

5.1.2 Uniformly Random Floating-Point Numbers
We uniformly randomly generated 1, 000, 000 q-bit integers,
reinterpreted them as floating-point numbers, and then tested
them. We used the same data set for all the algorithms. Since
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Grisu-Exact (avg: 24.77, std: 7.35, med: 23.20)
Grisu-Exact (w/o correct rounding) (avg: 23.66, std: 6.69, med: 22.40)
Ryu (avg: 24.84, std: 7.23, med: 23.10)

Bit representation
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im
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(n

s)

Grisu-Exact (avg: 39.37, std: 10.83, med: 36.10)
Grisu-Exact (w/o correct rounding) (avg: 37.66, std: 9.84, med: 35.40)
Ryu (avg: 42.35, std: 11.45, med: 39.40)

Figure 5. Performances of Grisu-Exact, Grisu-Exact without performing correct rounding search, and Ryū for uniform random
floating-point numbers (top: binary32, bottom: binary64)

it is too hard to recognize anything if all of 1, 000, 000 points
are drawn on a single figure, we sampled 10, 000 of them
for producing Figure 5. Averages, standard deviations, and
medians shown in Figure 5 are calculated from the original
data.

5.1.3 Procedure for Actual String Generation
Strictly speaking, Grisu-Exact as an algorithm does not in-
clude actual generation of human-readable string. Rather, it
only produces a pair of integers representing the decimal sig-
nificand and the decimal exponent of a given floating-point
number. For the benchmark, we copied (and modified a lit-

tle bit) the function producing a human-readable string from
this pair from Ryū’s reference implementation [7].
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[2] U. Adams. Ryū: Fast Float-to-String Conversion In Proceed-
ings of the ACM SIGPLAN 2018 Conference on Programming
Language Design and Implementation, PLDI 2018. ACM, New
York, NY, USA, 270–282. https://doi.org/10.1145/
3296979.3192369

[3] G. L. Steel Jr. and J. L. White. How to Print Floating-Point
Numbers Accurately. In Proceedings of the ACM SIGPLAN
1990 Conference on Programming Language Design and Imple-
mentation, PLDI 1990. ACM, New York, NY, USA, 112–126.
https://doi.org/10.1145/93542.93559

[4] https://github.com/jk-jeon/Grisu-Exact.
(Jun. 2020)

[5] https://stackoverflow.com/questions/
25095741/how-can-i-multiply-64-bit-
operands-and-get-128-bit-result-portably.
(Jun. 2020)

[6] T. Granlund and P. L. Montgomery. Division by Invariant
Integers using Multiplication. In ACM SIGPLAN Notices, Vol
29, Issue 6, Jun. 1994. ACM, New York, NY, USA, 61–72.
https://doi.org/10.1145/773473.178249

[7] https://github.com/ulfjack/ryu. (Jun. 2020)

29 2020/8/13

https://doi.org/10.1145/1806596.1806623
https://doi.org/10.1145/3296979.3192369
https://doi.org/10.1145/3296979.3192369
https://doi.org/10.1145/93542.93559
https://github.com/jk-jeon/Grisu-Exact
https://stackoverflow.com/questions/25095741/ how-can-i-multiply-64-bit-operands-and-get-128-bit-result-portably
https://stackoverflow.com/questions/25095741/ how-can-i-multiply-64-bit-operands-and-get-128-bit-result-portably
https://stackoverflow.com/questions/25095741/ how-can-i-multiply-64-bit-operands-and-get-128-bit-result-portably
https://doi.org/10.1145/773473.178249
https://github.com/ulfjack/ryu

	Disclaimer
	Introduction
	IEEE-754 Specifications
	Rounding Modes

	Flow of Grisu-Exact
	Overview
	Promotion of Significand to Wider Integers
	Grisu Multiplier
	Calculating k and 
	The Greatest Number with the Smallest Number of Digits
	Search Range of  and Conditions on (,)
	Calculating Integer Parts of z and 
	Search Procedure
	Case I: Decreasing Search (When 100s0-.25ex-.25ex-.25ex-.25exI)
	Case II: Increasing Search (When 100s0I)

	Comparing Fractional Parts
	Case I: fL=fc-2q-p-3, Fw=1 and Ew=Emin
	Case II: fL=fc-2q-p-2 and Fw=1 or Ew=Emin
	Case III: fL=fc-2q-p-2, Fw=1 and Ew=Emin
	Case IV: fL=fc-2q-p-1 and Fw=1 or Ew=Emin
	Case V: fL=fc

	Checking If z is an Integer
	Correct Rounding Search
	Some Theoretical Conclusions
	The Search Algorithm for >0
	The Search Algorithm for =0
	Choosing Between y(rd) and y(ru)


	Correctness of Integer Part Computation
	Case I: k<0
	Case II: k0
	Min-Max Euclid Algorithm

	Benchmark Results
	Some Notes on Our Benchmarks
	Random Floating-Point Numbers with Given Number of Digits
	Uniformly Random Floating-Point Numbers
	Procedure for Actual String Generation



